The Effect of Vegetation Restoration on Erosion Processes and Runoff on a Hillslope Under Simulated Rainfall
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Designs
2.3. Data Analysis
3. Results
3.1. Runoff and Sediment Yield Processes Under Different Vegetation Coverage
3.2. Runoff and Sediment Yield Processes on Slopes with Different Vegetation Components
3.3. The Contribution of Vegetation to Runoff and Sediment Reduction
3.3.1. The Effect of Vegetation Coverage on Runoff and Sediment Yield
3.3.2. The Effect of Vegetation Components on Runoff and Sediment Yield
4. Discussion
4.1. The Runoff and Sediment Yield Regulation Effects of Vegetation with Different Coverage
4.2. The Effect of Different Vegetation Components on Soil Erosion
4.3. Limitations
4.4. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Eekhout, J.P.C.; Vente, J.D. Global impact of climate change on soil erosion and potential for adaptation through soil conservation. Earth-Sci. Rev. 2022, 226, 103921. [Google Scholar] [CrossRef]
- Li, P.F.; Chen, J.N.; Zhao, G.J.; Holden, J.; Liu, B.T.; Chan, F.; Hu, J.F.; Wu, P.L.; Mu, X.M. Determining the drivers and rates of soil erosion on the Loess Plateau since 1901. Sci. Total Environ. 2022, 823, 153674. [Google Scholar] [CrossRef] [PubMed]
- Li, D.F.; Lu, X.X.; Overeem, I.; Walling, D.E.; Syvitski, J.; Kettner, A.J.; Bookhagen, B.; Zhou, Y.; Zhang, T. Exceptional increases in fluvial sediment fluxes in a warmer and wetter high mountain Asia. Science 2021, 374, 599–603. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lu, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau isapproaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Chen, Y.P.; Wang, K.B.; Lin, Y.S.; Shi, W.Y.; Song, Y.; He, X.H. Balancing green and grain trade. Nat. Geosci. 2015, 10, 739–741. [Google Scholar] [CrossRef]
- Vannoppen, W.; Vanmaercke, M.; De Baets, S.; Poesen, J. A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Sci. Rev. 2015, 150, 666–678. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, G.H.; Shi, Y.Y.; Zhang, X.C.; Ren, Z.P.; Zhu, L.J. Effect of natural restoration time of abandoned farmland on soil detachment by overland flow in the Loess Plateau of China. Earth Surf. Process. Landf. 2013, 38, 1725–1734. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Change 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Duan, L.X.; Huang, M.B.; Zhang, L.D. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China. J. Hydrol. 2016, 537, 356–366. [Google Scholar] [CrossRef]
- Tian, P.; Zhai, J.Q.; Zhao, G.J.; Mu, X.M. Dynamics of runoff and suspended sediment transport in a highly erodible catchment on the Chinese Loess Plateau. Land Degrad. Dev. 2016, 27, 839–850. [Google Scholar] [CrossRef]
- Huo, J.Y.; Yu, X.X.; Liu, C.J.; Chen, L.H.; Zheng, W.G.; Yang, Y.H.; Tang, Z.H. Effects of soil and water conservation management and rainfall types on runoff and soil loss for a sloping area in North China. Land Degrad. Dev. 2020, 31, 2117–2130. [Google Scholar] [CrossRef]
- Cheng, M.; Xiang, Y.; Xue, Z.J.; An, S.S.; Darboux, F. Soil aggregation and intra-aggregate carbon fractions in relation to vegetation succession on the Loess Plateau, China. Catena 2015, 124, 77–84. [Google Scholar] [CrossRef]
- Pan, C.Z.; Shangguan, Z.P. Runoff hydraulic characteristics and sediment generation in sloped grassplots under simulated rainfall conditions. J. Hydrol. 2006, 331, 178–185. [Google Scholar] [CrossRef]
- Sun, W.Y.; Mu, X.M.; Gao, P.; Zhao, G.J.; Li, J.Y.; Zhang, Y.Q.; Chiew, F. Landscape patches influencing hillslope erosion processes and flow hydrodynamics. Geoderma 2019, 353, 391–400. [Google Scholar] [CrossRef]
- Zhang, K.; Lv, Y.H.; Fu, B.J.; Yi, L.C.; Yu, D.D. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau. Acta Geogr. Sin. 2020, 75, 949–960. [Google Scholar]
- Mao, D.; Cherkauer, K.A. Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol. 2009, 374, 71–82. [Google Scholar] [CrossRef]
- Zhang, X.X.; Song, J.X.; Wang, Y.R.; Sun, H.T.; Li, Q. Threshold effects of vegetation coverage on runoff and soil loss in the Loess Plateau of China: A meta-analysis. Geoderma 2022, 412, 115720. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, H.B.; Li, Z.W.; Liu, C.; Wang, D.Y.; Wang, L.X.; Tang, C.J. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecol. Eng. 2019, 132, 109–114. [Google Scholar] [CrossRef]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2016, 45, 223–243. [Google Scholar] [CrossRef]
- Eshghizadeh, M.; Talebi, A.; Dastorani, M.T. Thresholds of land cover to control runoff and soil loss. Hydrol. Sci. J. 2018, 63, 1424–1434. [Google Scholar] [CrossRef]
- Chartier, M.P.; Rostagno, C.M. Soil erosion thresholds and alternative states in northeastern Patagonian rangelands. Rangel. Ecol. Manag. 2006, 59, 616–624. [Google Scholar] [CrossRef]
- Mohammad, A.G.; Adam, M.A. The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena 2010, 81, 97–103. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.L.; Zhang, Q.W.; Shen, N.; Liu, J.E. Evaluating and modelling splash detachment capacity based on laboratory experiments. Catena 2019, 176, 189–196. [Google Scholar] [CrossRef]
- Wu, B.; Wang, Z.L.; Zhang, Q.W.; Shen, N.; Liu, J.E. Response of soil detachment rate by raindrop-affected sediment-laden sheet flow to sediment load and hydraulic parameters within a detachment-limited sheet erosion system on steep slopes on Loess Plateau, China. Soil Tillage Res. 2019, 185, 9–16. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of plant roots on the resistance of soils to erosion by water: A review. Prog. Phys. Geogr. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, J.; Huang, Y.; Wang, G.; Zhang, M. Effects of Vegetation Stems on Hydraulics of Overland Flow Under Varying Water Discharges. Land Degrad. Dev. 2016, 27, 748–757. [Google Scholar] [CrossRef]
- Li, C.J.; Pan, C.Z. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall. J. Hydrol. 2018, 558, 90–103. [Google Scholar] [CrossRef]
- Zhou, Z.C.; Shangguan, Z.P. Effect of ryegrasses on soil runoff and sediment control. Pedosphere 2018, 18, 131–136. [Google Scholar] [CrossRef]
- Zhao, C.H.; Gao, J.E.; Huang, Y.F.; Wang, G.Q.; Xu, Z. The Contribution of astragalus adsurgens roots and canopy to water erosion control in the water-wind crisscrossed erosion region of the Loess Plateau, China. Land Degrad. Dev. 2017, 28, 265–273. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.Y.; Fu, B.J.; Yan, J.P.; Wang, S.; Yang, Y.T.; Long, D.; Feng, M.Q. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Xin, Z.B.; Ran, L.S.; Lu, X.X. Soil erosion control and sediment load reduction in the Loess Plateau: Policy perspectives. Int. J. Water Resour. Dev. 2012, 28, 325–341. [Google Scholar] [CrossRef]
- Yang, X.N.; Sun, W.Y.; Li, P.F.; Mu, X.M.; Gao, P.; Zhao, G.J. Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities. Sci. Total Environ. 2018, 642, 591–600. [Google Scholar] [CrossRef]
- Zhang, F.B.; Bai, Y.J.; Xie, L.Y.; Yang, M.Y.; Li, Z.B.; Wu, X.R. Runoff and soil loss characteristics on loess slopes covered with aeolian sand layers of different thicknesses under simulated rainfall. J. Hydrol. 2017, 549, 244–251. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, X.Y.; Tian, Y. Experimental Study on the Response Characteristics of Flow-Sediment Transport on Slope to the Vegetation Coverage. J. Basic Sci. Eng. 2020, 28, 632–641, (In Chinese with English Abstract). [Google Scholar]
- Ma, R.T.; Hu, F.N.; Xu, C.Y.; Liu, J.F.; Zhao, S.W. Response of soil aggregate stability and splash erosion to different breakdown mechanisms along natural vegetation restoration. Catena 2022, 208, 105775. [Google Scholar] [CrossRef]
- Zambon, N.; Johannsen, L.L.; Strauss, P.; Dostál, T.; Zumr, D.; Cochrane, T.; Klik, A. Splash erosion affected by initial soil moisture and surface conditions under simulated rainfall. Catena 2021, 196, 104827. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.Y.; Peng, J.; Xu, L.; Wang, J.G.; Cai, C.F. Splash erosion-induced soil aggregate turnover and associated organic carbon dynamics. Soil Tillage Res. 2024, 235, 105900. [Google Scholar] [CrossRef]
- Fu, Y.; Li, G.L.; Zheng, T.H.; Li, B.Q.; Zhang, T. Splash detachment and transport of loess aggregate fragments by raindrop action. Catena 2017, 150, 154–160. [Google Scholar] [CrossRef]
- Pereira, P.; Gimeìnez-Morera, A.; Novara, A.; Keesstra, S.D.; Jordán, A.; Masto, R.; Brevik, E.C.; Azorin-Molina, C. The impact of road and railway embankments on runoff and soil erosion in eastern Spain. Hydrol. Earth Syst. Sci. 2015, 12, 12947–12985. [Google Scholar]
- Cerdà, A.; Doerr, S.H. Influence of vegetation recovery on soil hydrology and erodibility following fire: An 11-year investigation. Int. J. Wildland Fire 2005, 14, 423–437. [Google Scholar] [CrossRef]
- Cerdà, A. The influence of geomorphological position and vegetation cover on the erosional and hydrological processes on a Mediterranean hillslope. Hydrol. Process. 1998, 12, 661–671. [Google Scholar] [CrossRef]
- Ni, J.; Luo, D.H.; Xia, J.; Zhang, Z.H.; Hu, G. Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth 2015, 6, 799. [Google Scholar] [CrossRef]
- Ola, A.; Dodd, I.C.; Quinton, J.N. Can we manipulate root system architecture to control soil erosion? Soil 2015, 1, 603–612. [Google Scholar] [CrossRef]
- Mamo, M.; Bubenzer, G.D. Detachment rate, soil erodibility, and soil strength as influenced by living plant roots part I: Laboratory study. Trans. ASAE 2001, 44, 1167–1174. [Google Scholar] [CrossRef]
- Mamo, M.; Bubenzer, G.D. Detachment rate, soil erodibility, and soil strength as influenced by living plant roots part II: Field study. Trans. ASAE 2001, 44, 1175–1181. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Nachtergaele, J.; Govers, G. The impact of sowing density of small grains on rill and ephemeral gully erosion in concentrated flow zones. Soil Tillage Res. 2002, 64, 189–201. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, G.Q.; Li, Z.B.; Peng, L. Experimental Study on Slope Runoff, Erosion and Sediment under Different Vegetation Types. Water Resour. Manag. 2014, 28, 2415–2433. [Google Scholar] [CrossRef]
- Van Oost, K.; Cerdan, O.; Quine, T.A. Accelerated sediment fluxes by water and tillage erosion on European agricultural land. Earth Surf. Process. Landf. 2009, 34, 1625–1634. [Google Scholar] [CrossRef]
- Muscha, J.M.; Hild, A.L. Biological soil crusts in grazed and ungrazed Wyoming sagebrush steppe. J. Arid. Environ. 2006, 67, 195–207. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, F.L.; Wilson, G.V.; Wu, M. Upslope inflow, hillslope gradient, and rainfall intensity impacts on ephemeral gully erosion. Land Degrad. Dev. 2017, 28, 2623–2635. [Google Scholar] [CrossRef]
- Mohamadi, M.A.; Kavian, A. Effect of rainfall patterns on runoff and soil erosion in field plots. Int. Soil Water Conserv. Res. 2015, 3, 273–281. [Google Scholar] [CrossRef]
- Liab, Z.; Fanga, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar]
- Cao, S.X.; Zhang, J.Z. Political risks arising from the impacts of large-scale afforestation on water resources of the Tibetan Plateau. Gondwana Res. 2015, 28, 898–903. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.Y.; Zhang, Z.Q.; Wei, X.H.; McNulty, S.G.; Vose, J.M. Potential water yield reduction due to forestation across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
Soil Type | Bulk Density | Soil Porosity (%) | Mechanical Composition (%) | ||||
---|---|---|---|---|---|---|---|
Inactive Porosity | Microporosity | Macroporosity | Sand | Silt | Clay | ||
Loessial soil | 1.1 ± 0.1 | 7.42 ± 1.24 | 8.65 ± 1.72 | 26.88 ± 2.45 | 11.49 ± 0.25 | 62.24 ± 0.33 | 26.27 ± 0.28 |
Rainfall Intensity (mm·min−1) | Fitted Equation | R2 | p |
---|---|---|---|
1.5 | R = −0.1752C + 1.1095 | 0.984 | 0.01 |
1.5 | S = 10.805e−0.678C | 0.950 | 0.01 |
2.0 | R = −0.1931C + 1.4079 | 0.938 | 0.01 |
2.0 | S = 10.695e−0.552C | 0.987 | 0.01 |
Rainfall Intensity (mm·min−1) | Vegetation Coverage (%) | Runoff Rate (mm·min−1) | Sediment Yield Rate (g·m2·min−1) | Reduction | Contributions (%) | ||
---|---|---|---|---|---|---|---|
Runoff (mm·min−1) | Sediment Yield (g·m−2·min−1) | Runoff | Sediment Yield | ||||
1.5 | 0 | 0.94 | 4.84 | - | - | - | - |
20 | 0.72 | 3.03 | 0.23 | 1.81 | 24% | 37% | |
40 | 0.61 | 1.32 | 0.34 | 3.52 | 36% | 73% | |
60 | 0.45 | 1.05 | 0.50 | 3.80 | 53% | 78% | |
90 | 0.20 | 0.28 | 0.74 | 4.57 | 79% | 94% | |
2.0 | 0 | 1.19 | 5.65 | - | - | ||
20 | 0.99 | 4.10 | 0.21 | 1.55 | 17% | 27% | |
40 | 0.86 | 1.89 | 0.33 | 3.76 | 28% | 67% | |
60 | 0.75 | 1.26 | 0.44 | 4.39 | 37% | 78% | |
90 | 0.35 | 0.65 | 0.85 | 5.00 | 71% | 89% |
Rainfall Intensity (mm·min−1) | Treatment | Runoff Rate (mm·min−1) | Sediment Yield Rate (g·m2·min−1) | Reduction | Contributions (%) | ||
---|---|---|---|---|---|---|---|
Runoff (mm·min−1) | Sediment Yield (g·m−2·min−1) | Runoff | Sediment Yield | ||||
1.5 | BS | 1.12 | 14.07 | - | - | - | - |
OS | 0.61 | 1.43 | 0.51 | 12.64 | 45% | 90% | |
NL | 0.91 | 6.49 | 0.21 | 7.58 | 19% | 54% | |
RS | 0.99 | 6.95 | 0.13 | 7.12 | 12% | 51% | |
2.0 | BS | 1.26 | 21.73 | - | - | - | - |
OS | 0.77 | 2.53 | 0.49 | 19.2 | 38% | 88% | |
NL | 0.99 | 9.16 | 0.27 | 12.57 | 22% | 58% | |
RS | 1.12 | 10.72 | 0.14 | 11.01 | 11% | 51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, L.; Hu, J.; Li, P.; Zhao, G.; Mu, X. The Effect of Vegetation Restoration on Erosion Processes and Runoff on a Hillslope Under Simulated Rainfall. Water 2025, 17, 2411. https://doi.org/10.3390/w17162411
Niu L, Hu J, Li P, Zhao G, Mu X. The Effect of Vegetation Restoration on Erosion Processes and Runoff on a Hillslope Under Simulated Rainfall. Water. 2025; 17(16):2411. https://doi.org/10.3390/w17162411
Chicago/Turabian StyleNiu, Lele, Jinfei Hu, Pengfei Li, Guangju Zhao, and Xingmin Mu. 2025. "The Effect of Vegetation Restoration on Erosion Processes and Runoff on a Hillslope Under Simulated Rainfall" Water 17, no. 16: 2411. https://doi.org/10.3390/w17162411
APA StyleNiu, L., Hu, J., Li, P., Zhao, G., & Mu, X. (2025). The Effect of Vegetation Restoration on Erosion Processes and Runoff on a Hillslope Under Simulated Rainfall. Water, 17(16), 2411. https://doi.org/10.3390/w17162411