Numerical Simulation of a Heat Exchanger with Multiturn Piping and Performance Optimization
Abstract
1. Introduction
2. Heat-Exchanger Modeling and Condition Confirmation
2.1. Heat-Transfer Equation
2.2. Heat Exchanger Modeling and Meshing
3. Heat-Exchanger Performance and Flow Analysis
3.1. Flow Speed in Shell Process
3.2. Sand Content in Shell Process
3.3. Sand Particle Size
4. Heat-Exchanger Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Zohri, E.H.; Shafey, H.M.; Kahoul, A. Performance evaluation of generator air coolers for the hydro-power plant of Aswan High Dam at Egypt. Energy 2019, 179, 960–974. [Google Scholar] [CrossRef]
- Najar, F.A.; Harmain, G.A. Thermal effects for conventional and water-cooled thrust bearing using finite difference method: Comparative analysis. Int. J. Precis. Technol. 2015, 5, 14–26. [Google Scholar] [CrossRef]
- Frota, M.N.; Ticona, E.M.; Neves, A.V.; Marques, R.P.; Braga, S.L.; Valente, G. On-line cleaning technique for mitigation of biofouling in the heat exchangers: A case study of a hydroelectric power plant in Brazil. Exp. Therm. Fluid Sci. 2014, 53, 197–206. [Google Scholar] [CrossRef]
- Çay, M.S.; Gezer, D. Assessment of an External Cooling System Using Experimental Methods for Thrust Bearing in a Large Hydraulic Unit. Water 2025, 17, 795. [Google Scholar] [CrossRef]
- Wang, J.; Bian, H.; Cao, X.; Ding, M. Numerical performance analysis of a novel shell-and-tube oil cooler with wire-wound and crescent baffles. Appl. Therm. Eng. 2021, 184, 116298. [Google Scholar] [CrossRef]
- Wang, S.; Qu, J.G.; Kong, L.J.; Zhang, J.F.; Qu, Z.G. Numerical and experimental study of heat-transfer characteristics of needle-to-ring-type ionic wind generator for heated-plate cooling. Int. J. Therm. Sci. 2019, 139, 176–185. [Google Scholar] [CrossRef]
- Amanowicz, Ł.; Wojtkowiak, J. Thermal performance of multipipe earth-to-air heat exchangers considering the nonuniform distribution of air between parallel pipes. Geothermics 2020, 88, 101896. [Google Scholar] [CrossRef]
- Tian, X.X.; Asaadi, S.; Moria, H.; Kaood, A.; Pourhedayat, S.; Jermsittiparsert, K. Proposing tube-bundle arrangement of tubular thermoelectric module as a novel air cooler. Energy 2020, 208, 118428. [Google Scholar] [CrossRef]
- Bruschewski, M.; Scherhag, C.; Schiffer, H.P.; Grundmann, S. Influence of channel geometry and flow variables on cyclone cooling of turbine blades. J. Turbomach. 2016, 138, 061005. [Google Scholar] [CrossRef]
- Ghorab, M.G. Cooling performance and flow-field analysis of a hybrid scheme with different outlet configurations. Appl. Therm. Eng. 2013, 61, 799–816. [Google Scholar] [CrossRef]
- Lad, A.A.; James, K.A.; King, W.P.; Miljkovic, N. Reduced order design optimization of liquid cooled heat sinks. J. Electron. Packag. 2021, 143, 041105. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Abdelgaied, M. Numerical and experimental investigation of a novel configuration of indirect evaporative cooler with internal baffles. Energy Convers. Manag. 2016, 126, 526–536. [Google Scholar] [CrossRef]
- Yuan, J.; Gu, Z.; Bao, J.; Yang, T.; Li, H.; Wang, Y.; Pei, L.; Jiang, H.; Chen, L.; Yuan, C. Structure optimization design and performance analysis of liquid cooling plate for power battery. J. Energy Storage 2024, 87, 111517. [Google Scholar] [CrossRef]
- Ye, L.; Lv, G.; Ding, Y. Structure optimization of radiant cooling panel: A literature review and assessment. Energy Build. 2024, 310, 114097. [Google Scholar] [CrossRef]
- Nada, S.A.; Eid, E.I.; Abd El Aziz, G.B.; Hassan, H.A. Performance enhancement of shell and helical coil water coolers using different geometric and fins conditions. Heat-Transf.—Asian Res. 2016, 45, 631–647. [Google Scholar] [CrossRef]
- Ghazi, T.; Attar, M.R.; Ghorbani, A.; Alshihmani, H.; Davoodi, A.; Passandideh-Fard, M.; Sardarabadi, M. Synergistic effect of active-passive methods using fins surface roughness and fluid flow for improving cooling performance of heat sink heat the pipes. Exp. Heat Transf. 2024, 37, 649–664. [Google Scholar] [CrossRef]
- Ismail, K.A.R.; Lino, F.A.M. Fins and turbulence promoters for heat transfer enhancement in latent heat storage systems. Exp. Therm. Fluid Sci. 2011, 35, 1010–1018. [Google Scholar] [CrossRef]
- Muratçobanoğlu, B.; Mandev, E.; Ceviz, M.A.; Manay, E.; Afshari, F. CFD simulation and experimental analysis of cooling performance for thermoelectric cooler with liquid cooling heat sink. J. Therm. Anal. Calorim. 2024, 149, 359–377. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Y.; Zhang, J.; Chen, Z.; Li, C.; Sun, W. Investigation on heat transfer mechanism simulation and structure optimization design of hydraulic turbine bearing semi-ring cooler. Heliyon 2025, 11, e42328. [Google Scholar] [CrossRef]
- Shi, Y.; Cao, J.; Zhai, L.; Wang, Z.W. The influence of installation deviation on the upper guide bearing thermo-hydrodynamic characteristics of a 1000 MW giant hydropower unit. Phys. Fluids 2024, 36, 5. [Google Scholar] [CrossRef]
- Georgescu, S.C.; Georgescu, A.M.; Jumara, A.; Piraianu, V.F.; Dunca, G. Numerical simulation of the cooling water system of a 115 MW Hydro-Power Plant. Energy Procedia 2016, 85, 228–234. [Google Scholar] [CrossRef]
- Muhsen, A.A.; Kizilova, N. The Advanced Cooling System of Generator for Hydropower Plant. Changes 2022, 8, 10. [Google Scholar]
- Kahraman, G. Increasing the Power Generation by Raising the Capacity of the Thrust Bearing Oil Cooling System in Hydroelectric Power Plants. J. Fail. Anal. Prev. 2020, 20, 1445–1449. [Google Scholar] [CrossRef]
- Doost, A.K.; Majlessi, R. Heat transfer analysis in cooling system of hydropower’s generator. Open J. Appl. Sci. 2015, 5, 98. [Google Scholar] [CrossRef]
- Bambang Teguh, P.; Hidayat, D.; Adnyana, D.N. Failure Analysis and Optimisation of Tube Water Cooler of Hydropower Plant. Int. J. Eng. Technol. 2013, 13. [Google Scholar]
- Reis, M.P.; de Paula, R.S.; Reis, A.L.M.; e Souza, C.C.; Júnior, R.B.d.O.; Ferreira, J.A.; Mota, H.R.; de Carvalho, M.F.; Jorge, E.C.; Cardoso, A.V.; et al. Microbial composition of a hydropower cooling water system reveals thermophilic bacteria with a possible role in primary biofilm formation. Biofouling 2021, 37, 246–256. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Liu, B.; Ge, X.; Zheng, Y.; Fernandez-Rodriguez, E. Research on oil mist leakage of bearing in Hydropower Station: A review. Energies 2022, 15, 2632. [Google Scholar] [CrossRef]
- Sotiropoulos, F.; Abdallah, S. The discrete continuity equation in primitive variable solutions of incompressible flow. J. Comput. Phys. 1991, 95, 212–227. [Google Scholar] [CrossRef]
- Girault, V.; Raviart, P.A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Bradshaw, P.; Ferriss, D.H.; Atwell, N.P. Calculation of boundary-layer development using the turbulent energy equation. J. Fluid Mech. 1967, 28, 593–616. [Google Scholar] [CrossRef]
- Chu, K.W.; Yu, A.B. Numerical simulation of complex particle–fluid flows. Powder Technol. 2008, 179, 104–114. [Google Scholar] [CrossRef]
- Kakac, S.; Yener, Y.; Pramuanjaroenkij, A. Convective Heat Transfer; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Salimpour, M.R. heat-transfer coefficients of shell and coiled tube heat exchangers. Exp. Therm. Fluid Sci. 2009, 33, 203–207. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Wang, T.; Zhang, J.; Li, L.; Zhang, Y. Experimental analysis and model prediction of elbow pipe’s erosion in water-cooled radiator. Sci. Rep. 2024, 14, 6880. [Google Scholar] [CrossRef] [PubMed]
Domain | Mesh Type | Number |
---|---|---|
Pipeline | Hexahedral structural mesh | 131.8 × |
Shell | Tetrahedral unstructured mesh | 387.9 × |
Medium | Hexahedral structural mesh | 37.4 × |
Work Condition | |||
---|---|---|---|
Case 1 | 0.16 MPa | 0 | 0 |
Case 2 | 0.19 MPa | 0 | 0 |
Case 3 | 0.22 Mpa | 0 | 0 |
Case 4 | 0.19 MPa | 1% | 0.1 mm |
Case 5 | 0.19 MPa | 1% | 0.3 mm |
Case 6 | 0.19 MPa | 1% | 0.5 mm |
Case 7 | 0.19 MPa | 0.5% | 0.3 mm |
Case 8 | 0.19 MPa | 1.5% | 0.3 mm |
Metric | Prototype | Improver | Improvement (%) |
---|---|---|---|
Oil-temperature drop, (K) | 6.88 | 7.41 | +7.7 |
Water-temperature rise, (K) | 1.94 | 1.28 | −34.0 |
Water flow rate (kg/s) | 32.2 | 49.3 | +53.1 |
Total heat-transfer rate, Q (kW) | 110.3 | 118.8 | +7.7 |
Pressure drop, (kPa) | 38.0 | 45.2 | +19.0 |
Velocity nonuniform coefficient, | 0.147 | 0.097 | −34.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Wang, L.; Hu, S.; Zhang, W. Numerical Simulation of a Heat Exchanger with Multiturn Piping and Performance Optimization. Water 2025, 17, 2404. https://doi.org/10.3390/w17162404
Jiang Z, Wang L, Hu S, Zhang W. Numerical Simulation of a Heat Exchanger with Multiturn Piping and Performance Optimization. Water. 2025; 17(16):2404. https://doi.org/10.3390/w17162404
Chicago/Turabian StyleJiang, Zheng, Lei Wang, Shen Hu, and Wenwen Zhang. 2025. "Numerical Simulation of a Heat Exchanger with Multiturn Piping and Performance Optimization" Water 17, no. 16: 2404. https://doi.org/10.3390/w17162404
APA StyleJiang, Z., Wang, L., Hu, S., & Zhang, W. (2025). Numerical Simulation of a Heat Exchanger with Multiturn Piping and Performance Optimization. Water, 17(16), 2404. https://doi.org/10.3390/w17162404