Hydraulic Performance of an Angled Oppermann Fine Screen with Guidance Wall
Abstract
1. Introduction
2. Methodology
2.1. Hydraulic Criteria
2.2. Experimental Setup
2.3. CFD Modeling
2.3.1. Flow Through a Porous Medium
2.3.2. CFD Model Establishment
3. Results
3.1. Experimental Results
3.2. Numerical Model Results
3.3. Guidance Wall Effect
4. Discussion
5. Conclusions
- With the guidance wall configuration, the distributions of streamlines and tangential velocities in front of the screen are shown to be more suitable for effective downstream fish guidance.
- The implementation of a curved guidance wall considerably reduced the formation of recirculation zones, leading to a symmetrical and homogeneous downstream flow field, improving flow conditions behind the screen.
- The proposed guidance wall and numerical modeling technique can be used in the refurbishment of existing intake screens at run-of-river hydropower plants, considering the site-specific, poor approach flow conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aufleger, C. Fish protection and downstream fish migration: State of the art and recent developments. Hydropower Dams 2023, 30, 72–75. [Google Scholar]
- Schwevers, U.; Adams, B. Fish Protection Technologies and Fish Ways for Downstream Migration; Springer Nature: Cham, Switzerland, 2020; pp. 1277–1278. [Google Scholar]
- Stoilova, V. Behavioural guidance systems for downstream migrating fish: A mini-review. In International School of Hydraulics; Springer Nature: Cham, Switzerland, 2024; pp. 385–396. [Google Scholar]
- David, L.; Chatellier, L.; Courret, D.; Albayrak, I.; Boes, R.M. Fish Guidance Structures with Narrow Bar Spacing: Physical Barriers. In Novel Developments for Sustainable Hydropower; Springer International Publishing: Cham, Switzerland, 2022; pp. 91–98. [Google Scholar] [CrossRef]
- Lemkecher, F.; Chatellier, L.; Courret, D.; David, L. Contribution of different elements of inclined trash racks to head losses modeling. Water 2020, 12, 966. [Google Scholar] [CrossRef]
- Raynal, S.; Chatellier, L.; David, L.; Courret, D.; Larinier, M. Numerical simulations of fish-friendly angled trashracks at model and real scale. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013. [Google Scholar]
- Raynal, S.; Chatellier, L.; Courret, D.; Larinier, M.; David, L. An experimental study on fish-friendly trashracks—Part 2. Angled trashracks. J. Hydraul. Res. 2013, 51, 67–75. [Google Scholar] [CrossRef]
- Raynal, S.; Chatellier, L.; Courret, D.; Larinier, M.; David, L. Streamwise bars in angled trashracks for fish protection at water intakes. J. Hydraul. Res. 2014, 52, 426–431. [Google Scholar] [CrossRef]
- Szabo-Meszaros, M.; Navaratnam, C.U.; Aberle, J.; Silva, A.T.; Forseth, T.; Calles, O.; Alfredsen, K. Experimental hydraulics on fish-friendly trash-racks: An ecological approach. Ecol. Eng. 2018, 113, 11–20. [Google Scholar] [CrossRef]
- Beck, C.; Albayrak, I.; Meister, J.; Boes, R.M. Hydraulic performance of fish guidance structures with curved bars: Part 1: Head loss assessment. J. Hydraul. Res. 2020, 58, 807–818. [Google Scholar] [CrossRef]
- Lemkecher, F.; Chatellier, L.; Courret, D.; David, L. Experimental study of fish-friendly angled bar racks with horizontal bars. J. Hydraul. Res. 2021, 60, 136–147. [Google Scholar] [CrossRef]
- Leuch, C.; Beck, C.; Albayrak, I.; Vetsch, D.F.; Boes, R. Analysis and Optimization of Hydraulic Characteristics at Fish Guidance Structures Using CFD. In Proceedings of the 39th IAHR World Congress, Granada, Spain, 19–24 June 2022; pp. 3721–3728. [Google Scholar]
- Tsikata, J.M.; Tachie, M.F.; Katopodis, C. Particle image velocimetry study of flow near trashrack models. J. Hydraul. Eng. 2009, 135, 671–684. [Google Scholar] [CrossRef]
- Knott, J.; Mueller, M.; Pander, J.; Geist, J. Downstream fish passage at small-scale hydropower plants: Turbine or bypass. Front. Environ. Sci. 2023, 11, 400. [Google Scholar] [CrossRef]
- Smasal, F. The most economical form of fish protection. In Proceedings of the Hydroelectric Power Between Ruhr and Lahn Conference, Brilon, Germany, 16 July 2015. (In German). [Google Scholar]
- Ebel, G.; Kehl, M.; Gluch, A. Advances in fish protection and downstream passage at hydropower stations—Startup of pilot plants at Freyburg and Öblitz. WasserWirtschaft 2018, 9, 54–62. (In German) [Google Scholar] [CrossRef]
- Ebel, G. Biological effectiveness of angled bar rack bypass systems—Current findings. WasserWirtschaft 2020, 12, 19–27. (In German) [Google Scholar]
- Courret, D.; Larinier, M. Guide pour la Conception de Prises d’eau Ichtyo-Compatibles pour les Petites Centrales Hydroélectriques [Guide for the Design of Fish-Friendly Intakes for Small Hydropower Plants]; Research Report No. RAPPORT GHAAPPE RA.08.04; Agence de l’Environnement et de la Maîtrise de l’Energie: Paris, France, 2008. [Google Scholar]
- Kucukali, S.; Cokgor, S. Fuzzy logic model to predict hydraulic jump aeration efficiency. Proc. Inst. Civ. Eng. Water Manag. 2007, 160, 225–231. [Google Scholar] [CrossRef]
- Kucukali, S.; Hassinger, R. Hydraulic model test results of baffle–brush fish pass. Proc. Inst. Civ. Eng. Water Manag. 2015, 168, 189–194. [Google Scholar] [CrossRef]
- Koczula, S. Hydraulic Investigation of the Effects of the Angled Flow on the Fish Screen. Bachelor’s Thesis, University of Kassel, Kassel, Germany, 2016. (In German). [Google Scholar]
- Flow Science, Inc. FLOW-3D® Version 11 User Manual., v 11.2; Flow Science, Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
- Ozbey, C.; Kucukali, S. CFD analysis of fish-friendly fine screens: Effect of approach flow characteristics. In River Flow 2024; CRC Press: Boca Raton, FL, USA, 2025; pp. 494–501. [Google Scholar]
- Kang, S. Large-eddy simulation study of turbulent flow around a rectangular spur dike. E3S Web Conf. 2018, 40, 1–8. [Google Scholar] [CrossRef]
- Quaresma, A.L.; Romão, F.; Branco, P.; Ferreira, M.T.; Pinheiro, A.N. Multi slot versus single slot pool-type fishways: A modelling approach to compare hydrodynamics. Ecol. Eng. 2018, 122, 197–206. [Google Scholar] [CrossRef]
- Sotiropoulos, F. Hydraulic engineering in the era of extreme-scale computing and data-driven modeling. In Proceedings of the 7th IAHR Europe Congress, Athens, Greece, 7–9 September 2022; p. 19. [Google Scholar]
- Rodi, W.; Constantinescu, G.; Stoesser, T. Large-Eddy Simulation in Hydraulics. In IAHR Monograph; CRC Press: Leiden, The Netherlands, 2013. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hinterberger, C.; Fröhlich, J.; Rodi, W. Three-dimensional and depth-averaged large-eddy simulations of some shallow water flows. J. Hydraul. Eng. 2007, 133, 857–872. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.; Chen, J.; Zhou, C. Verification and validation of CFD uncertainty analysis based on SST k-ω model. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84409, p. V008T08A044. [Google Scholar]
- Chatellier, L.; Wang, R.W.; David, L.; Courret, D.; Larinier, M. Experimental characterization of the flow across fishfriendly angled trashrack models. In Proceedings of the 34th IAHR Congress, Brisbane, Australia, 1–26 June 2011; pp. 2776–2783. [Google Scholar]
- Albayrak, I.; Kriewitz, C.R.; Hager, W.H.; Boes, R.M. An experimental investigation on louvres and angled bar racks. J. Hydraul. Res. 2017, 56, 59–75. [Google Scholar] [CrossRef]
- Åkerstedt, H.O.; Eller, S.; Lundström, T.S. Numerical Investigation of Turbulent Flow through Rectangular and Biconvex Shaped Trash Racks. Engineering 2017, 9, 412. [Google Scholar] [CrossRef]
- Kucukali, S.; Alp, A.; Albayrak, I. Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance. Water 2023, 15, 1155. [Google Scholar] [CrossRef]
- Xi, Y.; Cao, C.; Liu, S.; Li, P.; Xiao, L.; Yao, W. Swimming behaviour of downstream migrating carp in accelerating flows. J. Hydraul. Res. 2024, 62, 253–266. [Google Scholar] [CrossRef]
- Enders, E.C.; Gessel, M.H.; Anderson, J.J.; Williams, J.G. Effects of Decelerating and Accelerating Flows on Juvenile Salmonid Behavior. Trans. Am. Fish. Soc. 2012, 141, 357–364. [Google Scholar] [CrossRef]
- Bellgraph, B.J.; McMichael, G.A.; Mueller, R.P.; Monroe, J.L. Behavioural response of juvenile Chinook salmon (Oncorhynchus tshawytscha) during a sudden temperature increase and implications for survival. J. Therm. Biol. 2010, 35, 6–10. [Google Scholar] [CrossRef]
- Gad-el-Hak, M. Flow Control: Passive, Active, and Reactive Flow Management; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Beaudoin, J.F.; Cadot O’Aider, J.L.; Wesfreid, J.E. Drag reduction of a bluff body using adaptive control methods. Phys. Fluids 2006, 18, 085107. [Google Scholar] [CrossRef]
- Choi, H.; Jeon, W.P.; Kim, J. Control of flow over a bluff body. Annu. Rev. Fluid Mech. 2008, 40, 113–139. [Google Scholar] [CrossRef]
(L/s) | (m/s) | (m) | (m) | (mm) | (-) | (-) | (-) | (-) |
---|---|---|---|---|---|---|---|---|
225 | 0.5 | 0.6 | 2 | 10 | 30° | 0.21 | 3000 | 0.65 |
225 | 0.5 | 0.6 | 2 | 10 | 45° | 0.21 | 3000 | 0.70 |
Mesh Size (m) | ||||
---|---|---|---|---|
(m/s) | (m2/s2) | (m/s) | (m2/s2) | |
0.05 | ||||
0.04 | ||||
0.03 | ||||
0.02 | ||||
0.01 |
Parameter | ||
---|---|---|
MAPE = 4.6% | MAPE = 9.1% | |
MAPE = 4.0% | MAPE = 4.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozbey, C.; Kucukali, S.; Hassinger, R. Hydraulic Performance of an Angled Oppermann Fine Screen with Guidance Wall. Water 2025, 17, 2398. https://doi.org/10.3390/w17162398
Ozbey C, Kucukali S, Hassinger R. Hydraulic Performance of an Angled Oppermann Fine Screen with Guidance Wall. Water. 2025; 17(16):2398. https://doi.org/10.3390/w17162398
Chicago/Turabian StyleOzbey, Cumhur, Serhat Kucukali, and Reinhard Hassinger. 2025. "Hydraulic Performance of an Angled Oppermann Fine Screen with Guidance Wall" Water 17, no. 16: 2398. https://doi.org/10.3390/w17162398
APA StyleOzbey, C., Kucukali, S., & Hassinger, R. (2025). Hydraulic Performance of an Angled Oppermann Fine Screen with Guidance Wall. Water, 17(16), 2398. https://doi.org/10.3390/w17162398