PECA: An Integrated Real-Time Biosensing Platform for Detecting Thermal Stress in Aquatic Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. System Design and Hardware Configuration
2.2. Test Organisms
2.3. Experimental Design
2.4. Data Acquisition and Processing
2.5. Physiological Stress Index (PSI)
2.6. Statistical Analysis
3. Results
3.1. System Monitoring Technology Upgrade
3.2. Signal Transmission and Processing
3.3. Analysis of Monitoring Results
3.3.1. Behavioral Analysis
3.3.2. Metabolic Analysis
3.3.3. ECG Analysis
3.4. Effectiveness Analysis of PSI Based on Experimental Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, S.C.; Dick, J.T.; Laming, P.R.; Gerhardt, A. Assessment of the Multispecies Freshwater Biomonitor (MFB) in a marine context: The Green crab (Carcinus maenas) as an early warning indicator. J. Environ. Monit. 2010, 12, 1566–1574. [Google Scholar] [CrossRef]
- Gerhardt, A.; Carlsson, A.; Ressemann, C.; Stich, K.P. New Online Biomonitoring System for Gammarus pulex (L.) (Crustacea): In Situ Test Below a Copper Effluent in South Sweden. Environ. Sci. Technol. 1998, 32, 150–156. [Google Scholar] [CrossRef]
- Sanchez, B.C.; Ochoa-Acuna, H.; Porterfield, D.M.; Sepulveda, M.S. Oxygen flux as an indicator of physiological stress in fathead minnow (Pimephales promelas) embryos: A real-time biomonitoring system of water quality. Environ. Sci. Technol. 2008, 42, 7010–7017. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, A.I.; Mondejar, A.G.; da Silva, A.C.; Silva-Calpa, G.; Teixeira, M.F.; Carvalho, F.; Raposo, A.; Endler, M. Real-time data analysis in health monitoring systems: A comprehensive systematic literature review. J. Biomed. Inform. 2022, 127, 104009. [Google Scholar] [CrossRef] [PubMed]
- Benito, D.; Briand, M.; Herlory, O.; Izagirre, U.; Bouchoucha, M.; Briaudeau, T. Active mussel biomonitoring for the health status assessment of the Western Mediterranean Sea. Mar. Pollut. Bull. 2024, 207, 116898. [Google Scholar] [CrossRef] [PubMed]
- Bögemann, S.A.; van Leeuwen, J.M.C.; van Kraaij, A.; Weermeijer, J.; de Raedt, W.; Kalisch, R.; Myin-Germeys, I.; Hermans, E.J. Real-time analysis of psychological and physiological stress signals to trigger emotion-regulation interventions in daily life. Psychoneuroendocrinology 2024, 160, 106721. [Google Scholar] [CrossRef]
- Salanki, J.; Farkas, A.; Kamardina, T.; Rozsa, K.S. Molluscs in biological monitoring of water quality. Toxicol. Lett. 2003, 140–141, 403–410. [Google Scholar] [CrossRef]
- Borcherding, J. Ten Years of Practical Experience with the Dreissena-Monitor, a Biological Early Warning System for Continuous Water Quality Monitoring. Hydrobiologia 2006, 556, 417–426. [Google Scholar] [CrossRef]
- Ren, Z.; Su, N.T.; Miao, M.; Fu, R.; Zhang, G. Improvement of Biological Early Warning System Based on Medaka (Oryzias latipes) Behavioral Responses to Physiochemical Factors. J. Biobased Mater. Bioenergy 2012, 6, 678–681. [Google Scholar] [CrossRef]
- Xia, C.; Chon, T.-S.; Liu, Y.; Chi, J.; Lee, J. Posture tracking of multiple individual fish for behavioral monitoring with visual sensors. Ecol. Inform. 2016, 36, 190–198. [Google Scholar] [CrossRef]
- Elad, T.; Almog, R.; Yagur-Kroll, S.; Levkov, K.; Melamed, S.; Shacham-Diamand, Y.; Belkin, S. Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips. Environ. Sci. Technol. 2011, 45, 8536–8544. [Google Scholar] [CrossRef] [PubMed]
- Campana, O.; Wlodkowic, D. Ecotoxicology Goes on a Chip: Embracing Miniaturized Bioanalysis in Aquatic Risk Assessment. Environ. Sci. Technol. 2018, 52, 932–946. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Gao, Y.; Ryu, J.; Choi, S. Portable, Disposable, Paper-Based Microbial Fuel Cell Sensor Utilizing Freeze-Dried Bacteria for In Situ Water Quality Monitoring. ACS Omega 2020, 5, 13940–13947. [Google Scholar] [CrossRef] [PubMed]
- Bownik, A.; Wlodkowic, D. Advances in real-time monitoring of water quality using automated analysis of animal behaviour. Sci. Total Environ. 2021, 789, 147796. [Google Scholar] [CrossRef]
- Sauvola, J.; Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef]
- Huang, T.L.; Cong, H.B. A new method for the determination of chlorophylls in freshwater algae. Environ. Monit. Assess. 2007, 129, 1–7. [Google Scholar] [CrossRef]
- Brullo, T.; Barnett, J.; Waters, E.; Boulter, S. The enablers of adaptation: A systematic review. npj Clim. Action 2024, 3, 40. [Google Scholar] [CrossRef]
- Xing, N.; Ji, L.; Song, J.; Ma, J.; Li, S.; Ren, Z.; Xu, F.; Zhu, J. Cadmium stress assessment based on the electrocardiogram characteristics of zebra fish (Danio rerio): QRS complex could play an important role. Aquat. Toxicol. 2017, 191, 236–244. [Google Scholar] [CrossRef]
- Clausen, J.; van Wijk, R.; Albrecht, H. Weakly electric fish for biomonitoring water quality. Environ. Technol. 2012, 33, 1089–1099. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Y.; Yu, F.; Parks, E.; Lyman, A.; Wu, Q.; Ai, L.; Hu, C.H.; Zhou, Q.; Shung, K.; et al. Micro-electrocardiograms to study post-ventricular amputation of the zebrafish heart. Ann. Biomed. Eng. 2009, 37, 890–901. [Google Scholar] [CrossRef]
- Gutruf, P.; Yin, R.T.; Lee, K.B.; Ausra, J.; Brennan, J.A.; Qiao, Y.; Xie, Z.; Peralta, R.; Talarico, O.; Murillo, A.; et al. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742. [Google Scholar] [CrossRef]
- Wei, D.; Wang, L.; Poopal, R.K.; Ren, Z. IR-based device to acquire real-time online heart ECG signals of fish (Cyprinus carpio) to evaluate the water quality. Environ. Pollut. 2023, 337, 122564. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Li, X.; Zhu, T.; Zhu, Y.; Chen, Y.; Wu, X.; Yang, D. Effects of water temperature on growth performance, digestive enzymes activities, and serum indices of juvenile Coreius guichenoti. J. Therm. Biol. 2023, 115, 103595. [Google Scholar] [CrossRef]
- Freitas, R.; De Marchi, L.; Bastos, M.; Moreira, A.; Velez, C.; Chiesa, S.; Wrona, F.J.; Figueira, E.; Soares, A.M.V.M. Effects of seawater acidification and salinity alterations on metabolic, osmoregulation and oxidative stress markers in Mytilus galloprovincialis. Ecol. Indic. 2017, 79, 54–62. [Google Scholar] [CrossRef]
- Campos, D.F.; Val, A.L.; Almeida-Val, V.M.F. The influence of lifestyle and swimming behavior on metabolic rate and thermal tolerance of twelve Amazon forest stream fish species. J. Therm. Biol. 2018, 72, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Madeira, D.; Narciso, L.; Cabral, H.N.; Vinagre, C.; Diniz, M.S. Influence of temperature on thermal and oxidative stress responses in estuarine fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2013, 166, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Zutshi, B.; Singh, A.; Dasgupta, P. Impact of transient temperature disturbance on the oxidative stress indices and glucose levels of juvenile Koi carps (Cyprinus carpio var koi). J. Basic Appl. Zool. 2020, 81, 4. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Zhang, R.; Li, H.; Zhu, H. Correlation of skin color and plasma carotenoid-related metabolites of ornamental koi carp under temperature fluctuations. Ecotoxicol. Environ. Saf. 2024, 273, 116165. [Google Scholar] [CrossRef]
- Hasan, A.K.M.M.; Hamed, M.; Hasan, J.; Martyniuk, C.J.; Niyogi, S.; Chivers, D.P. A review of the neurobehavioural, physiological, and reproductive toxicity of microplastics in fishes. Ecotoxicol. Environ. Saf. 2024, 282, 116712. [Google Scholar] [CrossRef]
- Chen, G.; Guo, S.; Liu, L.; Zhang, W.; Tang, J. Effects of microplastics on microbial community and greenhouse gas emission in soil: A critical review. Ecotoxicol. Environ. Saf. 2025, 289, 117419. [Google Scholar] [CrossRef]
- Nuwansi, K.K.T.; Verma, A.K.; Rathore, G.; Chandrakant, M.H.; Prabhath, G.P.W.A.; Peter, R.M. Effect of hydraulic loading rate on the growth of koi carp (Cyprinus carpio var. koi) and Gotukola (Centella asiatica (L.)) using phytoremediated aquaculture wastewater in aquaponics. Aquac. Int. 2020, 28, 639–652. [Google Scholar] [CrossRef]
- Tudorache, C.; Anique, T.B.; Mara, T.; Hans, S.; Schaaf, M.J.M. Behavioral and physiological indicators of stress coping styles in larval zebrafish. Stress 2015, 18, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, L.; Chen, J.; Ren, Z.; Wang, Z.; Chon, T.S. Evidence for the Stepwise Behavioral Response Model (SBRM): The effects of Carbamate Pesticides on medaka (Oryzias latipes) in an online monitoring system. Chemosphere 2012, 87, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Poopal, R.K.; He, Y.; Zhao, R.; Li, B.; Ramesh, M.; Ren, Z. Organophosphorus-based chemical additives induced behavioral changes in zebrafish (Danio rerio): Swimming activity is a sensitive stress indicator. Neurotoxicol. Teratol. 2021, 83, 106945. [Google Scholar] [CrossRef] [PubMed]
- Durdevic, P.; Raju, C.S.; Yang, Z. Potential for Real-Time Monitoring and Control of Dissolved Oxygen in the Injection Water Treatment Process. IFAC-PapersOnLine 2018, 51, 170–177. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Chen, Y.; Qing, R.; Cao, X.; Chen, P.; Liu, W.; Wang, Y.; Zhou, G.; Xu, H.; et al. Fast deployable real-time bioelectric dissolved oxygen sensor based on a multi-source data fusion approach. Chem. Eng. J. 2023, 475, 146064. [Google Scholar] [CrossRef]
- Bagheri, M.; Bagheri, K.; Farshforoush, N.; Velazquez, A.; Liu, Y. A novel hybrid deep learning model for real-time monitoring of water pollution using sensor data. J. Water Process Eng. 2024, 68, 106595. [Google Scholar] [CrossRef]
- Huynh, T.-P.; Vo, D.-H. Engineering performance of alkali-activated green building bricks incorporating solid waste materials. 2019, 11, 163–166.
- Ren, B.; Yu, Y.; Poopal, R.K.; Qiao, L.; Ren, B.; Ren, Z. IR-Based Novel Device for Real-Time Online Acquisition of Fish Heart ECG Signals. Environ. Sci. Technol. 2022, 56, 4262–4271. [Google Scholar] [CrossRef]
- Fan, Y.C.; Lee, W.H.; Iam, C.T.; Syu, G.H. Indoor Place Name Annotations with Mobile Crowd. In Proceedings of the 2013 International Conference on Parallel and Distributed Systems, Seoul, Republic of Korea, 15–18 December 2013; pp. 546–551. [Google Scholar]
- Basol, B.M.; Kapur, V.K.; Kullberg, R.C.; Mitchell, R.L. Cd/sub 1-x/Zn/sub x/Te thin films prepared by a two-stage process utilizing electrodeposition. In Proceedings of the Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 26–30 September 1988; Volume1502, pp. 1500–1504. [Google Scholar]
- Fang, W.H.; Yagle, A.E. Discrete fast algorithms for two-dimensional linear prediction on a polar raster. IEEE Trans. Signal Process. 1992, 40, 1480–1489. [Google Scholar] [CrossRef]
- Areerak, K.; Bozhko, S.V.; Asher, G.M.; De Lillo, L.; Thomas, D.W.P. Stability Study for a Hybrid AC-DC More-Electric Aircraft Power System. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 329–347. [Google Scholar] [CrossRef]
- Yan, S.-C.; Sun, C.-J.; Tsai, M.-J.; Chen, L.-C.; Yeh, M.-S.; Li, C.-C.; Lee, Y.-J.; Wu, Y.-C. Germanium Twin-Transistor Nonvolatile Memory With FinFET Structure. IEEE J. Electron Devices Soc. 2020, 8, 589–593. [Google Scholar] [CrossRef]
- Gerhardt, A.; Schmidt, S. The multispecies freshwater biomonitor: A potential new tool for sediment biotests and biomonitoring. J. Soils Sediments 2002, 2, 67–70. [Google Scholar] [CrossRef]
- Gerhardt, A. A New Multispecies Freshwater Biomonitor for Ecologically Relevant Supervision of Surface Waters. In Biomonitors and Biomarkers as Indicators of Environmental Change 2. Environmental Science Research; Springer: Boston, MA, USA, 2001. [Google Scholar]
- Pettersson-Yeo, W.; Benetti, S.; Marquand, A.F.; Joules, R.; Catani, M.; Williams, S.C.; Allen, P.; McGuire, P.; Mechelli, A. An empirical comparison of different approaches for combining multimodal neuroimaging data with a support vector machine. Front. Neurosci. 2014, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- Selye, H. The evolution of the stress concept. Am. Sci. 1973, 61, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Ren, B.; Qiao, L.; Ren, B.; Hu, Y.; Zhao, R.; Ren, Z.; Du, J. Behavior responses of zebrafish (Danio rerio) to aquatic environmental stresses in the characteristic of circadian rhythms. Chemosphere 2018, 210, 129–138. [Google Scholar] [CrossRef]
- Ren, Z.; Li, S.; Zhang, T.; Qi, L.; Xing, N.; Yu, H.; Jian, J.; Chon, T.S.; Tang, B. Behavior persistence in defining threshold switch in stepwise response of aquatic organisms exposed to toxic chemicals. Chemosphere 2016, 165, 409–417. [Google Scholar] [CrossRef]
- Zakęś, Z.; Demska-zakęś, K.; Kata, K. Rates of oxygen consumption and ammonia excretion of juvenile Eurasian perch Perca fluviatilis L. Aquac. Int. 2003, 11, 277–288. [Google Scholar] [CrossRef]
- Kutty, M.N.; Karuppannan, N.; Narayanan, M.M.; Mohamed, M.P. Maros-Schulek Technique for Measurement of Carbon Dioxide Production in Fish and Respiratory Quotient in Tilapia mossambica. Wsq Women’s Stud. Q. 1971, 28, 1342–1344. [Google Scholar] [CrossRef]
- Qiao, L.; Chen, X.; Ren, B.; Poopal, R.K.; Zhao, R.; Ren, Z. The specification of zebrafish (Danio rerio) heart electrocardiogram index characteristic responses to different types of pollutants. Chemosphere 2021, 267, 129199. [Google Scholar] [CrossRef]
- Xiao, R. The role of telemetry monitoring: From diagnosing arrhythmia to predictive models of patient instability. J. Electrocardiol. 2025, 89, 153861. [Google Scholar] [CrossRef]
- Marouf, M.; Vukomanovic, G.; Saranovac, L.; Bozic, M. Multi-purpose ECG telemetry system. Biomed. Eng. Online 2017, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Rezazadeh, J.; Bello, A.; Dawoud, A.; Albabawat, A.A. Real Time Remote Cardiac Health Monitoring Using IoT Wearable Sensors—A Review. In Proceedings of the Second International Conference on Innovations in Computing Research (ICR’23), Madrid, Spain, 4–6 September 2023; pp. 280–291. [Google Scholar]
- Forbes, V.E.; Calow, P. Responses of aquatic organisms to pollutant stress: Theoretical and practical implications. In Environmental Stress, Adaptation and Evolution; Bijlsma, R., Loeschcke, V., Eds.; Birkhäuser Basel: Basel, Switzerland, 1997; pp. 25–41. [Google Scholar]
- Yi, Y.; Yang, Z.; Zhang, S. Ecological influence of dam construction and river-lake connectivity on migration fish habitat in the Yangtze River basin, China. Procedia Environ. Sci. 2010, 2, 1942–1954. [Google Scholar] [CrossRef]
- Shao, X.; Fang, Y.; Jawitz, J.W.; Yan, J.; Cui, B. River network connectivity and fish diversity. Sci. Total Environ. 2019, 689, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Qiao, Y.; Jin, Y.; Lek, S.; Yan, T.; He, Z.; Chang, J.; Cai, L. Upstream migration of fishes downstream of an under-construction hydroelectric dam and implications for the operation of fish passage facilities. Glob. Ecol. Conserv. 2020, 23, e01143. [Google Scholar] [CrossRef]
- O’Mara, K.; Venarsky, M.; Stewart-Koster, B.; McGregor, G.B.; Schulz, C.; Kainz, M.; Marshall, J.; Bunn, S.E. Connectivity of fish communities in a tropical floodplain river system and predicted impacts of potential new dams. Sci. Total Environ. 2021, 788, 147785. [Google Scholar] [CrossRef]
- Sun, J.; Tummers, J.S.; Galib, S.M.; Lucas, M.C. Fish community and abundance response to improved connectivity and more natural hydromorphology in a post-industrial subcatchment. Sci. Total Environ. 2022, 802, 149720. [Google Scholar] [CrossRef]
- Zhang, C.; Peng, Z.; Tang, C.; Zhang, S. Evaluation of river longitudinal connectivity based on landscape pattern and its application in the middle and lower reaches of the Yellow River, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 30779–30792. [Google Scholar] [CrossRef]
- Saucedo, P.E.; Ocampo, L.A.; Monteforte, M.; Bervera, H. Effect of temperature on oxygen consumption and ammonia excretion in the Calafia mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 2004, 229, 377–387. [Google Scholar] [CrossRef]
- Das, S.K.; De, M.; Ghaffar, M.A.; Noor, N.M.; Mazumder, S.K.; Bakar, Y. Effects of temperature on the oxygen consumption rate and gill fine structure of hybrid grouper, Epinephelus fuscoguttatus (female) × E. lanceolatus (male). J. King Saud Univ.—Sci. 2021, 33, 101358. [Google Scholar] [CrossRef]
- Giacomin, M.; Schulte, P.M.; Wood, C.M. Differential Effects of Temperature on Oxygen Consumption and Branchial Fluxes of Urea, Ammonia, and Water in the Dogfish Shark (Squalus acanthias suckleyi). Physiol. Biochem. Zool. 2017, 90, 627–637. [Google Scholar] [CrossRef]
- Oliveira, P.R.C.; Abe, A.S.; Klein, W. Temperature effects on oxygen consumption and breathing pattern in juvenile and adult Chelonoidis carbonarius (Spix, 1824). Respir. Physiol. Neurobiol. 2023, 307, 103978. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Y.; Ren, Z. PECA: An Integrated Real-Time Biosensing Platform for Detecting Thermal Stress in Aquatic Environments. Water 2025, 17, 2369. https://doi.org/10.3390/w17162369
Fu Y, Ren Z. PECA: An Integrated Real-Time Biosensing Platform for Detecting Thermal Stress in Aquatic Environments. Water. 2025; 17(16):2369. https://doi.org/10.3390/w17162369
Chicago/Turabian StyleFu, Yihang, and Zongming Ren. 2025. "PECA: An Integrated Real-Time Biosensing Platform for Detecting Thermal Stress in Aquatic Environments" Water 17, no. 16: 2369. https://doi.org/10.3390/w17162369
APA StyleFu, Y., & Ren, Z. (2025). PECA: An Integrated Real-Time Biosensing Platform for Detecting Thermal Stress in Aquatic Environments. Water, 17(16), 2369. https://doi.org/10.3390/w17162369