Natural-Based Solution for Sewage Using Hydroponic Systems with Water Hyacinth
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Source and Propagation of Water Hyacinth
2.3. Experimental Setup for Batch Phytoremediation of Raw Sewage
2.4. Water Sampling and Analysis
2.5. Plant Sampling and Analysis
2.6. Statistical Analysis
3. Results and Discussions
3.1. Characteristics of Raw Sewage Wastewater at the Study Site
3.2. Plant Growth Monitoring
3.3. Water Quality Monitoring
3.3.1. Biochemical Oxygen Demand (BOD)
3.3.2. Chemical Oxygen Demand (COD)
3.3.3. Ammoniacal Nitrogen (NH4)
3.3.4. Nitrate (NO3)
3.3.5. Total Phosphate (TP)
3.3.6. Total Suspended Solid (TSS)
3.3.7. Color
3.3.8. Dissolved Oxygen (DO)
3.3.9. pH
3.4. SPSS Correlation Analysis for Water Hyacinth Phytoremediation Performance in Batch Experiment
3.5. Future Research Direction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rajasulochana, P.; Preethy, V. Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water–A Comprehensive Review. Resour. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef]
- James, A.P. Phytoremediation for Sewage Treatment by Varying Load Constructed Wetland under Hydroponic Condition Using Vetiver Grass. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 11841–11846. [Google Scholar]
- Khandegar, V.; Acharya, S.; Jain, A.K. Data on Treatment of Sewage Wastewater by Electrocoagulation Using Punched Aluminum Electrode and Characterization of Generated Sludge. Data Br. 2018, 18, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.K.; Vijaya Krishna, S.; Verma, K.; Pooja, K.; Bhagawan, D.; Himabindu, V. Phycoremediation of Sewage Wastewater and Industrial Flue Gases for Biomass Generation from Microalgae. S. Afr. J. Chem. Eng. 2018, 25, 133–146. [Google Scholar] [CrossRef]
- Valipour, A.; Raman, V.K.; Ahn, Y.H. Effectiveness of Domestic Wastewater Treatment Using a Bio-Hedge Water Hyacinth Wetland System. Water 2015, 7, 329–347. [Google Scholar] [CrossRef]
- Delgadillo-Mirquez, L.; Lopes, F.; Taidi, B.; Pareau, D. Nitrogen and Phosphate Removal from Wastewater with a Mixed Microalgae and Bacteria Culture. Biotechnol. Rep. 2016, 11, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Nawarkar, C.J.; Salkar, V.D. Solar Powered Electrocoagulation System for Municipal Wastewater Treatment. Fuel 2019, 237, 222–226. [Google Scholar] [CrossRef]
- Department of Environment Malaysia Environmental Quality (Sewage) Regulations. 2009. Available online: https://www.doe.gov.my/portalv1/wp-content/uploads/2015/01/Environmental_Quality_Sewage_Regulations_2009_-_P.U.A_432-2009.pdf (accessed on 22 April 2020).
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Wahab, N.A. Application of Water Hyacinth (Eichhornia crassipes) for Phytoremediation of Ammoniacal Nitrogen: A Review. J. Water Process Eng. 2018, 22, 239–249. [Google Scholar] [CrossRef]
- Dhote, S.; Dixit, S. Water Quality Improvement through Macrophytes-A Review. Environ. Monit. Assess. 2009, 152, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. Site Test of Phytoremediation of an Open Pond Contaminated with Domestic Sewage Using Water Hyacinth and Water Lettuce. Ecol. Eng. 2016, 95, 753–762. [Google Scholar] [CrossRef]
- Iamchaturapatr, J.; Yi, S.W.; Rhee, J.S. Nutrient Removals by 21 Aquatic Plants for Vertical Free Surface-Flow (VFS) Constructed Wetland. Ecol. Eng. 2007, 29, 287–293. [Google Scholar] [CrossRef]
- Sarto, S.; Hildayati, R.; Syaichurrozi, I. Effect of Chemical Pretreatment Using Sulfuric Acid on Biogas Production from Water Hyacinth and Kinetics. Renew. Energy 2019, 132, 335–350. [Google Scholar] [CrossRef]
- Souza, S.V.; Gimenes, R.M.T.; Binotto, E. Economic Viability for Deploying Hydroponic System in Emerging Countries: A Differentiated Risk Adjustment Proposal. Land Use Policy 2019, 83, 357–369. [Google Scholar] [CrossRef]
- Rana, S.; Bag, S.K.; Golder, D.; Mukherjee Roy, S.; Pradhan, C.; Jana, B.B. Reclamation of Municipal Domestic Wastewater by Aquaponics of Tomato Plants. Ecol. Eng. 2011, 37, 981–988. [Google Scholar] [CrossRef]
- Alnawajha, M.M.; Kurniawan, S.B.; Imron, M.F.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R. Plant-Based Coagulants/Flocculants: Characteristics, Mechanisms, and Possible Utilization in Treating Aquaculture Effluent and Benefiting from the Recovered Nutrients. Environ. Sci. Pollut. Res. 2022, 29, 58430–58453. [Google Scholar] [CrossRef] [PubMed]
- Al-Ajalin, F.A.H.; Idris, M.; Abdullah, S.R.S.; Kurniawan, S.B.; Imron, M.F. Effect of Wastewater Depth to the Performance of Short-Term Batching-Experiments Horizontal Flow Constructed Wetland System in Treating Domestic Wastewater. Environ. Technol. Innov. 2020, 20, 101106. [Google Scholar] [CrossRef]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, Plant Selection and Enhancement by Natural and Synthetic Agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Dominguez, J.J.A.; Inoue, C.; Chien, M.-F. Hydroponic Approach to Assess Rhizodegradation by Sudangrass (Sorghum x drummondii) Reveals PH-And Plant Age-Dependent Variability in Bacterial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs). J. Hazard. Mater. 2020, 387, 121695. [Google Scholar] [CrossRef] [PubMed]
- UNEP Marine Litter An Analytical Overview. 2005. Available online: https://www.unep.org/resources/report/marine-litter-analytical-overview (accessed on 1 February 2025).
- APHA; AWWA. Standard Methods for Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Gong, Y.; Zhou, X.; Ma, X.; Chen, J. Sustainable Removal of Formaldehyde Using Controllable Water Hyacinth. J. Clean. Prod. 2018, 181, 1–7. [Google Scholar] [CrossRef]
- Imron, M.F.; Firdaus, A.A.F.; Flowerainsyah, Z.O.; Rosyidah, D.; Fitriani, N.; Kurniawan, S.B.; Abdullah, S.R.S.; Hasan, H.A.; Wibowo, Y.G. Phytotechnology for Domestic Wastewater Treatment: Performance of Pistia stratiotes in Eradicating Pollutants and Future Prospects. J. Water Process Eng. 2023, 51, 103429. [Google Scholar] [CrossRef]
- Rezania, S.; Din, M.F.M.; Taib, S.M.; Dahalan, F.A.; Songip, A.R.; Singh, L.; Kamyab, H. The Efficient Role of Aquatic Plant (Water Hyacinth) in Treating Domestic Wastewater in Continuous System. Int. J. Phytoremediation 2016, 18, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S.E.; Md Din, M.F.; Taib, S.M.; Sabbagh, F.; Sairan, F.M. Perspectives of Phytoremediation Using Water Hyacinth for Removal of Heavy Metals, Organic and Inorganic Pollutants in Wastewater. J. Environ. Manage. 2015, 163, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Bliedung, A.; Dockhorn, T.; Germer, J.; Mayerl, C.; Mohr, M. Experiences of Running a Hydroponic System in a Pilot Scale for Resource-Efficient Water Reuse. J. Water Reuse Desalin. 2020, 10, 347–362. [Google Scholar] [CrossRef]
- Zhu, Z.; Yogev, U.; Keesman, K.J.; Rachmilevitch, S.; Gross, A. Integrated Hydroponics Systems with Anaerobic Supernatant and Aquaculture Effluent in Desert Regions: Nutrient Recovery and Benefit Analysis. Sci. Total Environ. 2023, 904, 166867. [Google Scholar] [CrossRef] [PubMed]
- Theuri, M. Water Hyacinth–Can Its Aggressive Invasion Be Controlled? Environ. Dev. 2013, 7, 139–154. [Google Scholar] [CrossRef]
- Mendoza, E.; Vosse, J.; Azzellino, A.; Santos, L.H.M.L.M.; Semitsoglou-Tsiapou, S.; Comas, J.; Buttiglieri, G. From Shower to Table: Fate of Organic Micropollutants in Hydroponic Systems for Greywater Treatment and Lettuce Cultivation. Blue-Green Syst. 2024, 6, 70–89. [Google Scholar] [CrossRef]
- Ayupan, C.J.; Fernandes, C.C.; Balfermoso, V.H.; Atienza, A.H.S. Smart Hydroponic Plant Growth Chamber with Integrated Air Conditioning System, Artificial Photosynthetic Lighting System, and Smart Monitoring System. Chem. Eng. Trans. 2024, 112, 283–288. [Google Scholar] [CrossRef]
- Bailey, R. Phases of the Bacterial Growth Curve; ThoughtCo.: New York, NY, USA, 2018; Available online: https://www.thoughtco.com/bacterial-growth-curve-phases-4172692 (accessed on 1 February 2025).
- Aishwarya, J.M.; Vidhya, R. Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “Amaranthus Campestris” Plant for Sustainability. Sustainability 2023, 15, 7814. [Google Scholar] [CrossRef]
- Tangahu, B.V.; Ningsih, D.A.; Kurniawan, S.B.; Imron, M.F. Study of BOD and COD Removal in Batik Wastewater Using Scirpus Grossus and Iris Pseudacorus with Intermittent Exposure System. J. Ecol. Eng. 2019, 20, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Fadhil, M.; Din, M.; Ponraj, M.; Sairan, F.M.; Fatimah, S.; Kamaruddin, B. Nutrient Uptake and Wastewater Purification with Water Hyacinth and Its Effect on Plant Growth in Batch System. J. Environ. Treat. Tech. 2013, 1, 81–85. [Google Scholar]
- Vymazal, J. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Chan, D.J.C. Wastewater Phytoremediation by Salvinia Molesta. J. Water Process Eng. 2017, 15, 107–115. [Google Scholar] [CrossRef]
- Akinbile, C.O.; Yusoff, M.S. Assessing Water Hyacinth (Eichhornia crassipes) and Lettuce (Pistia stratiotes) Effectiveness in Aquaculture Wastewater Treatment. Int. J. Phytoremediation 2012, 14, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Ting, W.H.T.; Tan, I.A.W.; Salleh, S.F.; Abdul Wahab, N. Ammoniacal Nitrogen Removal by Eichhornia crassipes-Based Phytoremediation: Process Optimization Using Response Surface Methodology. Appl. Water Sci. 2020, 10, 80. [Google Scholar] [CrossRef]
- Ray, R.; Henshaw, P.; Biswas, N. Effects of Reduced Aeration in a Biological Aerated Filter. Can. J. Civ. Eng. 2012, 39, 432–438. [Google Scholar] [CrossRef]
- Reddy, K.R.; Tucker, J.C. Productivity and Nutrient Uptake of Water Hyacinth, Eichhornia crassipes I. Effect of Nitrogen Source. Econ. Bot. 1983, 37, 237–247. [Google Scholar] [CrossRef]
- Rajalakshmi, M.; Gunasekaran, K. Effective Nutrient Removal from Aquaculture Wastewater Utilizing an Indoor Nutrient Film Technique Hydroponic System. Environ. Qual. Manag. 2024, 34, e22262. [Google Scholar] [CrossRef]
- Arivukkarasu, D.; Sathyanathan, R. A Sustainable Green Solution to Domestic Sewage Pollution: Optimizing Floating Wetland Treatment with Different Plant Combinations and Growth Media. Water Cycle 2024, 5, 185–198. [Google Scholar] [CrossRef]
- Priya, E.S.; Selvan, P.S. Water Hyacinth (Eichhornia crassipe)—An Efficient and Economic Adsorbent for Textile Effluent Treatment–A Review. Arab. J. Chem. 2017, 10, S3548–S3558. [Google Scholar] [CrossRef]
- Mahmood, Q.; Zheng, P.; Islam, E.; Hayat, Y.; Hassan, M.J.; Jilani, G.; Jin, R.C. Lab Scale Studies on Water Hyacinth (Eichhornia crassipes (Marts.) Solms.) for Biotreatment of Textile Wastewater. Casp. J. Env. Sci. 2005, 3, 83–88. [Google Scholar]
- Urucu, O.A.; Garosi, B.; Musah, R.A. Efficient Phytoremediation of Methyl Red and Methylene Blue Dyes from Aqueous Solutions by Juncus Effusus. ACS Omega 2025, 10, 1943–1953. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Roy, S.; Mahindrakar, A.B. Treatment of Water Using Water Hyacinth, Water Lettuce and Vetiver Grass—A Review. Resour. Environ. 2012, 2, 202–215. [Google Scholar] [CrossRef]
- Mayo, A.W.; Hanai, E.E. Modeling Phytoremediation of Nitrogen-Polluted Water Using Water Hyacinth (Eichhornia crassipes). Phys. Chem. Earth 2017, 100, 170–180. [Google Scholar] [CrossRef]
- Addy, M.M.; Kabir, F.; Zhang, R.; Lu, Q.; Deng, X.; Current, D.; Griffith, R.; Ma, Y.; Zhou, W.; Chen, P.; et al. Co-Cultivation of Microalgae in Aquaponic Systems. Bioresour. Technol. 2017, 245, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Oryani, B.; Cho, J.; Sabbagh, F.; Rupani, P.F.; Talaiekhozani, A.; Rahimi, N.; Ghahroud, M.L. Technical Aspects of Biofuel Production from Different Sources in Malaysia-A Review. Processes 2020, 8, 993. [Google Scholar] [CrossRef]
- Saha, P.; Shinde, O.; Sarkar, S. Phytoremediation of Industrial Mines Wastewater Using Water Hyacinth. Int. J. Phytoremediation 2017, 19, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Askari, S.S.; Giri, B.S.; Basheer, F.; Izhar, T.; Ahmad, S.A.; Mumtaz, N. Enhancing Sequencing Batch Reactors for Efficient Wastewater Treatment across Diverse Applications: A Comprehensive Review. Environ. Res. 2024, 260, 119656. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Kurniawan, S.B.; Ahmad, J.; Alias, J.; Marsidi, N.; Said, N.S.M.; Yusof, A.S.M.; Buhari, J.; Ramli, N.N.; Rahim, N.F.M.; et al. Dosage-Based Application versus Ratio-Based Approach for Metal-And Plant-Based Coagulants in Wastewater Treatment: Merits, Limitations, and Applicability. J. Clean. Prod. 2022, 334, 130245. [Google Scholar] [CrossRef]
- Buhari, J.; Hasan, H.A.; Kurniawan, S.B.; Abdullah, S.R.S.; Othman, A.R. Future and Challenges of Co-Biofilm Treatment on Ammonia and Bisphenol A Removal from Wastewater. J. Water Process Eng. 2023, 54, 103969. [Google Scholar] [CrossRef]
- Hudakorn, T.; Sritrakul, N. Biogas and Biomass Pellet Production from Water Hyacinth. Energy Rep. 2020, 6, 532–538. [Google Scholar] [CrossRef]
- Nguyen Vo Chau, N.; Huynh Van, T.; Nguyen Cong, T.; Kim, L.; Pham, D. Van Water Lettuce (Pistia stratiotes L.) Increases Biogas Effluent Pollutant Removal Efficacy and Proves a Positive Substrate for Renewable Energy Production. PeerJ 2023, 11, e15879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Weng, C.; Huang, H.; Achal, V.; Wang, D. Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process. Front. Microbiol. 2016, 6, 1411. [Google Scholar] [CrossRef] [PubMed]
- Gusain, R.; Pandey, B.; Suthar, S. Composting as a Sustainable Option for Managing Biomass of Aquatic Weed Pistia: A Biological Hazard to Aquatic System. J. Clean. Prod. 2018, 177, 803–812. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Achieving a Biocircular Economy in the Aquaculture Sector Through Waste Valorization. Toxics 2025, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Elbagory, M.; El-Nahrawy, S.; Omara, A.E.-D.; Eid, E.M.; Bachheti, A.; Kumar, P.; Abou Fayssal, S.; Adelodun, B.; Bachheti, R.K.; Kumar, P.; et al. Sustainable Bioconversion of Wetland Plant Biomass for Pleurotus Ostreatus Var. Florida Cultivation: Studies on Proximate and Biochemical Characterization. Agriculture 2022, 12, 2095. [Google Scholar] [CrossRef]
Parameter | [3] | [4] | [5] | [6] | [7] | EQA (Sewage) Regulations 2009 Malaysia [8] | |
---|---|---|---|---|---|---|---|
Standard A | Standard B | ||||||
pH | 7.19 | 8.77 | 7.38 | 7.8 | 7 | 6.0–9.0 | 5.5–9.0 |
TSS (mg/L) | 130 | 780 | 164.6 | 88.9 | - | 50 | 100 |
BOD (mg/L) | 69.22 | 80 | 215.42 | - | - | 20 | 50 |
COD (mg/L) | 231.8 | 520 | 418.36 | 278 | 260 | 120 | 200 |
Nitrates (mg/L) | - | 3.84 | - | 1.4 | - | 20 | 50 |
Phosphate (mg/L) | 38.12 | 1.189 | 11.43 | 3.1 | - | 5 | 10 |
TN (mg/L) | - | - | 47.15 | 3.1 | - | - | - |
Ammoniacal Nitrogen (mg/L) | - | - | 33.01 | 41.6 | - | 20 | 50 |
Parameter | Raw (Tap) Water | Raw Sewage Wastewater | EQA (Sewage) Regulations 2009 Malaysia [8] * | |
---|---|---|---|---|
Standard A | Standard B | |||
pH | 7.28 ± 0.16 | 7.31 ± 0.05 | 6.0–9.0 | 5.5–9.0 |
DO | 5.95 ± 1.62 | 0.25 ± 0.04 | NA | NA |
BOD (mg/L) | 8.26 ± 4.31 | 277 ± 15.4 | 20 | 50 |
COD (mg/L) | 74.53 ± 8.6 | 516 ± 12.7 | 120 | 200 |
Ammoniacal Nitrogen (mg/L) | 3.03 ± 2.87 | 18 ± 0.34 | 20 | 50 |
Nitrates (mg/L) | 1.39 ± 0.12 | 1.6 ± 0.34 | 20 | 50 |
Total Phosphate (mg/L) | 1 ± 0.0 | 3.95 ± 0.18 | 5 | 10 |
Total Suspended Solid (mg/L) | 4.13 ± 1.17 | 76.5 ± 5.30 | 50 | 100 |
Color (ADMI) | - | 34.5 ± 2.35 | NA | NA |
Day 0 | Day 10 | |
---|---|---|
4 WH Plant | ||
4 WH Plant—Control | ||
5 WH Plant | ||
5 WH Plant—Control | ||
6 WH Plant | ||
6 WH Plant—Control |
Setup | With Water Hyacinths | Water Sample with Water Hyacinths | Control | Water Sample Control | |
---|---|---|---|---|---|
Day | |||||
Day 0 | |||||
Day 3 | |||||
Day 5 | |||||
Day 7 | |||||
Day 10 |
Exposure Period | Plant Group Comparison | Sig. (p) | ||
---|---|---|---|---|
Day 0 | BE-4 WH | Compare to | BE-5 WH | 0.899 |
BE-4 WH | Compare to | BE-6 WH | 0.432 | |
BE-5 WH | Compare to | BE-6 WH | 0.363 | |
Day 3 | BE-4 WH | Compare to | BE-5 WH | 0.594 |
BE-4 WH | Compare to | BE-6 WH | 0.031 ** | |
BE-5 WH | Compare to | BE-6 WH | 0.009 ** | |
Day 5 | BE-4 WH | Compare to | BE-5 WH | 0.078 |
BE-4 WH | Compare to | BE-6 WH | 0.161 | |
BE-5 WH | Compare to | BE-6 WH | 0.703 | |
Day 7 | BE-4 WH | Compare to | BE-5 WH | 0.078 |
BE-4 WH | Compare to | BE-6 WH | 0.722 | |
BE-5 WH | Compare to | BE-6 WH | 0.037 ** | |
Day 10 | BE-4 WH | Compare to | BE-5 WH | 0.017 ** |
BE-4 WH | Compare to | BE-6 WH | 0.350 | |
BE-5 WH | Compare to | BE-6 WH | 0.002 ** |
Variables | pH | |
---|---|---|
Pearson Correlation (r) | Sig. (p) | |
Number of Plant Factors | −0.067 | 0.663 |
Exposure Period | −0.810 | 0.000 ** |
Plant Weight | −0.806 | 0.000 ** |
DO | −0.731 | 0.000 ** |
BOD | 0.841 | 0.000 ** |
COD | 0.825 | 0.000 ** |
TSS | 0.607 | 0.000 ** |
NH4 | 0.783 | 0.000 ** |
NO3 | −0.090 | 0.556 |
TP | 0.871 | 0.000 ** |
Color | 0.653 | 0.000 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yen, L.Y.; Abdullah, S.R.S.; Imron, M.F.; Kurniawan, S.B. Natural-Based Solution for Sewage Using Hydroponic Systems with Water Hyacinth. Water 2025, 17, 2122. https://doi.org/10.3390/w17142122
Yen LY, Abdullah SRS, Imron MF, Kurniawan SB. Natural-Based Solution for Sewage Using Hydroponic Systems with Water Hyacinth. Water. 2025; 17(14):2122. https://doi.org/10.3390/w17142122
Chicago/Turabian StyleYen, Lim Yen, Siti Rozaimah Sheikh Abdullah, Muhammad Fauzul Imron, and Setyo Budi Kurniawan. 2025. "Natural-Based Solution for Sewage Using Hydroponic Systems with Water Hyacinth" Water 17, no. 14: 2122. https://doi.org/10.3390/w17142122
APA StyleYen, L. Y., Abdullah, S. R. S., Imron, M. F., & Kurniawan, S. B. (2025). Natural-Based Solution for Sewage Using Hydroponic Systems with Water Hyacinth. Water, 17(14), 2122. https://doi.org/10.3390/w17142122