Deriving Implicit Optimal Operation Rules for Reservoirs Based on TgLSTM
Abstract
1. Introduction
2. Data and Study Area
3. Model Development
3.1. Optimal Operation Model for Reservoir Power Generation
3.2. Particle Swarm Optimization (PSO)
3.3. Vanilla Long Short-Term Memory Network
3.4. Theory-Guided Long Short-Term Memory Network (TgLSTM)
3.5. TgLSTM-Based Operation Rules Extraction Model
4. Application and Validation
4.1. Results and Analysis
4.2. Method Comparison
5. Limitations and Future Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Wang, X.; Lei, X.H.; Liao, W.H.; Wang, C.; Wang, J. The development and prospect of key techniques in the cascade reservoir operation. J. Hydraul. Eng. 2019, 50, 25–37. [Google Scholar]
- Li, L.; Liu, P.; Rheinheimer, D.E.; Deng, C.; Zhou, Y. Identifying explicit formulation of operating rules for multi-reservoir systems using genetic programming. Water Resour. Manag. 2014, 28, 1545–1565. [Google Scholar] [CrossRef]
- Zhong, Z.; Zou, Q.; Wang, X.; Rao, G.; Ding, Y. Study on multi-objective joint operation technology of cascade reservoirs in upper reaches of Changjiang River. Yangtze River 2022, 53, 12–20. [Google Scholar]
- Zhong, J.; Dong, Z.; Yao, H.; Ni, X.; Chen, M.; Jia, W.; Ye, H. Multi-objective operation rules for cascade reservoirs: Case study of Xiluodu-Xiangjiaba cascade. J. Hydroelectr. Eng. 2021, 40, 46–54. [Google Scholar]
- Yin, Z.J.; Wang, X.L.; Hu, T.S.; Wu, Y.Q. Water supply reservoir operating rules extraction based on data mining. Syst. Eng.-Theory Pract. 2006, 8, 129–135. [Google Scholar]
- Wu, X.; Guo, R.; Cheng, X.; Cheng, C. Combined aggregated sampling stochastic dynamic programming and simulation-optimization to derive operation rules for large-scale hydropower system. Energies 2021, 14, 625. [Google Scholar] [CrossRef]
- Ming, B.; Liu, P.; Chang, J.; Wang, Y.; Huang, Q. Deriving operating rules of pumped water storage using multi-objective optimization: Case study of the Han to Wei inter-basin water transfer project, China. J. Water Resour. Plan. Manag. 2017, 143, 05017012. [Google Scholar] [CrossRef]
- Murgatroyd, A.; Hall, J.W. Selecting indicators and optimizing decision rules for long-term water resources planning. Water Resour. Res. 2021, 57, e2020WR028117. [Google Scholar] [CrossRef]
- Xu, B.; Lu, Q.; Zhong, P. Stepwise regression model for extracting joint optimal operation rules of cascade hydropower stations. Water Power 2017, 43, 99–103. [Google Scholar]
- Guo, S.L.; Chen, J.H.; Liu, P.; Li, Y. State-of-the-art review of joint operation for multi-reservoir systems. Adv. Water Sci. 2010, 21, 496–503. [Google Scholar] [CrossRef]
- Jin, X. Thoughts on multi-reservoir joint-dispatching and informatization in the Yangtze River Basin. China Flood Drought Manag. 2019, 29, 12–17. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, H.; Wang, B. Applications and researches of decision tree technology in reservoir operation. J. Harbin Inst. Technol. 2007, 8, 1314–1318. [Google Scholar]
- Ji, C.; Li, J.; Zhang, X.; Shi, P.; Yu, S. Study on hydropower station operation rules based on rough sets and support vector machine. J. Hydroelectr. Eng. 2014, 33, 43–49. [Google Scholar]
- Feng, Z.-K.; Niu, W.-J.; Zhang, R.; Wang, S.; Cheng, C.-T. Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization. J. Hydrol. 2019, 576, 229–238. [Google Scholar] [CrossRef]
- Yang, G.; Guo, S.; Chen, K.; Wu, X. Multi-objective cascade reservoir optimal operation rules based on decision factor selection. J. Hydraul. Eng. 2017, 48, 914–923. [Google Scholar]
- Dai, L.; Luo, G.; Zhou, J. Method for extracting reservoir operation rules based on decision tree and its ensemble model. Water Resour. Power 2023, 41, 45–48+44. [Google Scholar]
- Yu, S.; Ma, J. Deep learning for geophysics: Current and future trends. Rev. Geophys. 2021, 29, e2021RG000742. [Google Scholar] [CrossRef]
- Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S.M.; Wang, J.; Lin, C.; Cristea, N.; Tong, D.; Carande, W.H.; Ma, X.; et al. A review of Earth artificial intelligence. Comput. Geosci. 2022, 159, 105034. [Google Scholar] [CrossRef]
- Tsai, W.-P.; Feng, D.; Pan, M.; Beck, H.; Lawson, K.; Yang, Y.; Liu, J.; Shen, C. From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling. Nat. Commun. 2020, 12, 5988. [Google Scholar] [CrossRef]
- Niu, W.-J.; Feng, Z.-K.; Feng, B.-F.; Min, Y.-W.; Cheng, C.-T.; Zhou, J.-Z. Comparison of multiple linear regression, artificial neural network, extreme learning machine, and support vector machine in deriving operation rule of hydropower reservoir. Water 2019, 11, 88. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhou, J.; Peng, L. Study on DFA_VMD_LSTM hybrid daily runoff forecasting model. Water Resour. Power 2021, 39, 12–15. [Google Scholar]
- Zhang, D.; Peng, Q.; Lin, J.; Wang, D.; Liu, X.; Zhuang, J. Simulating reservoir operation using recurrent neural network algorithm. Water Resour. Power 2021, 39, 83–86+70. [Google Scholar] [CrossRef]
- Han, Y.; Wang, L.; Wei, P.; Li, Z.; Zhou, W. VMD-CNN-GRU hybrid model for reservoir water level prediction. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2023, 16, 239–246. [Google Scholar]
- Wang, F.; Wang, J.; Wang, Y.; Guo, X. Application of improved explicit stochastic dynamic programming in cascade reservoir optimization scheduling. China Rural. Water Hydropower 2023, 8, 7–12. [Google Scholar]
- Zhang, W.; Zheng, Y.; Liu, Z.; Li, M. Study on deep learning model for reservoir operation guided by physical mechanism. J. Hydroelectr. Eng. 2023, 42, 13–25. [Google Scholar]
- Wang, N.; Zhang, D.; Chang, H.; Li, H. Deep learning of subsurface flow via theory-guided neural network. J. Hydrol. 2020, 584, 124700. [Google Scholar] [CrossRef]
- Zheng, S. Reflections on the Three Gorges Project since its operation. Engineering 2016, 2, 389–397. [Google Scholar] [CrossRef]
- Liu, D. Study on comprehensive water resources utilization and operation of reservoir group in upper Yangtze River and TGP. Yangtze River 2010, 41, 5–9. [Google Scholar] [CrossRef]
- Guo, W.; Xia, Z.; Wang, Y.; Han, S. Ecological operation goals for Three Gorges Reservoir. Adv. Water Sci. 2009, 20, 554–559. [Google Scholar]
- Xu, B.; Yao, H.; Chu, C. Gain mechanism analysis of power generation joint operation for the cascade reservoirs from the lower Jinsha River to the Three Gorges–Gezhouba. South-North Water Transf. Water Sci. Technol. 2018, 16, 195–202. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks 1995, Perth, Australia, 27 November–1 December 1995. [Google Scholar]
- Strauch, M.; Cord, A.F.; Pätzold, C.; Lautenbach, S.; Kaim, A.; Schweitzer, C.; Seppelt, R.; Volk, M. Constraints in multi-objective optimization of land use allocation: Repair or penalize? Environ. Model. Softw. 2019, 118, 241–251. [Google Scholar] [CrossRef]
- Yao, H.; Dong, Z.; Li, D.; Ni, X.; Chen, T.; Chen, M.; Jia, W.; Huang, X. Long-term optimal reservoir operation with tuning on large-scale multi-objective optimization: Case study of cascade reservoirs in the Upper Yellow River Basin. J. Hydrol. Reg. Stud. 2022, 40, 101000. [Google Scholar] [CrossRef]
- Colah. Understanding LSTM Networks. 2015. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on 7 July 2025).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Luo, G.; Zhou, J.; Zhao, Y. Improved deep neural network simulation method for multireservoir operation. J. Hydroelectr. Eng. 2020, 39, 23–32. [Google Scholar]
- Marquez Calvo, O.O.; Quintiliani, C.; Alfonso, L.; Di Cristo, C.; Leopardi, A.; Solomatine, D.; de Marinis, G. Robust optimization of valve management to improve water quality in WDNs under demand uncertainty. Urban Water J. 2019, 15, 943–952. [Google Scholar] [CrossRef]
- Yang, G. Analysis and Dynamic Regulation of Water Resources Carrying Capacity in Coastal Areas for the Most Stringent Water Resources Management System. Master’s Thesis, Hohai University, Nanjing, China, 2021. [Google Scholar]
- Dong, Z.; Ni, X.; Chen, M.; Yao, H. Multi-objective time-varying preference decision method and application for river basin water resources dispatching. Adv. Water Sci. 2021, 32, 376–386. [Google Scholar]
- Guo, Y.; Fang, G.; Wen, X. Deriving rules for staged dispatching of hydropower stations. J. Hydroelectr. Eng. 2019, 38, 20–31. [Google Scholar]
TgLSTM | LSTM | SwR | SVM | BP–ANN | |
---|---|---|---|---|---|
Correlation Coefficient | 0.98 | 0.98 | 0.97 | 0.99 | 0.87 |
Mean Absolute Error (MAE) | 440 | 394 | 1090 | 340 | 2030 |
Nash–Sutcliffe Efficiency (NSE) | 0.95 | 0.96 | 0.86 | 0.97 | 0.27 |
Maximum Ten-Day Water Level Fluctuation (m) | 2.08 | 6.00 | 6.45 | 2.82 | 2.41 |
Terminal Water Level (m) | 143.78 | 141.96 | 152.13 | 149.93 | 174.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, R.; Jia, W.; Qian, Z. Deriving Implicit Optimal Operation Rules for Reservoirs Based on TgLSTM. Water 2025, 17, 2059. https://doi.org/10.3390/w17142059
He R, Jia W, Qian Z. Deriving Implicit Optimal Operation Rules for Reservoirs Based on TgLSTM. Water. 2025; 17(14):2059. https://doi.org/10.3390/w17142059
Chicago/Turabian StyleHe, Ran, Wenhao Jia, and Zhengzhe Qian. 2025. "Deriving Implicit Optimal Operation Rules for Reservoirs Based on TgLSTM" Water 17, no. 14: 2059. https://doi.org/10.3390/w17142059
APA StyleHe, R., Jia, W., & Qian, Z. (2025). Deriving Implicit Optimal Operation Rules for Reservoirs Based on TgLSTM. Water, 17(14), 2059. https://doi.org/10.3390/w17142059