A Bibliometric Analysis and Visualization of the Assessment of Non-Point Source Pollution Control
Abstract
1. Introduction
2. Data and Methods
2.1. Data Sources
2.2. Research Methods
3. Result and Discussion
3.1. Annual Trends in the Number of Publications
3.2. Contribution of Countries Analysis
3.3. Contribution of Institutions Analysis
3.4. Authors Analysis and Citation Analysis
3.5. Journal Analysis
3.6. Keywords Analysis
3.6.1. Frequency and Co-Occurrence Analysis
3.6.2. Analysis on Development History and Emerging Trends
3.6.3. Perspectives for the Future
3.6.4. Analytical Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xepapadeas, A. The Economics of Non-Point-Source Pollution, In Annual Review of Resource Economics; Rausser, G.C., Smith, V.K., Zilberman, D., Eds.; Annual Reviews: Palo Alto, CA, USA, 2011; Volume 3, pp. 355–373. [Google Scholar]
- Brown, T.C.; Froemke, P. Nationwide Assessment of Nonpoint Source Threats to Water Quality. Bioscience 2012, 62, 136–146. [Google Scholar]
- Candela, A.; Freni, G.; Mannina, G.; Viviani, G. Receiving water body quality assessment: An integrated mathematical approach applied to an Italian case study. J. Hydroinformatics 2012, 14, 30–47. [Google Scholar]
- Candela, A.; Archibald, J.A.; Easton, Z.M.; Shaw, S.B.; Schneider, R.L.; Walter, M.T. Quantification of diffuse and concentrated pollutant loads at the watershed-scale: An Italian case study. Water Sci. Technol. 2009, 59, 2125–2135. [Google Scholar] [PubMed]
- Coetser, S.E.; Heath, R.G.M.; Ndombe, N. Diffuse pollution associated with the mining sectors in South Africa: A first-order assessment. Water Sci. Technol. 2007, 55, 9–16. [Google Scholar]
- Provolo, G.; Sali, G.; Gandolfi, C.; Jang, J.; Cho, Y.; Magette, W. Situation, strategies and BMPS to control agricultural NPS pollution in the European Union. Irrig. Drain. 2016, 65, 86–93. [Google Scholar]
- Kumwimba, M.N.; Zhu, B.; Stefanakis, A.I.; Ajibade, F.O.; Dzakpasu, M.; Soana, E.; Wang, T.; Arif, M.; Muyembe, D.K.; Agboola, T.D. Advances in ecotechnological methods for diffuse nutrient pollution control: Wicked issues in agricultural and urban watersheds. Front. Environ. Sci. 2023, 11, 37. [Google Scholar]
- Group, E.W.; New EWG Database Details $30 Billion Spent on U.S. Farm Conservation Programs. Available online: https://www.ewg.org/news-insights/news-release/new-ewg-database-details-30-billion-spent-us-farm-conservation-programs (accessed on 9 April 2018).
- Wu, B.; Zhang, X.; Xu, J.; Liu, J.F.; Wei, F.L. Assessment and management of nonpoint source pollution based on multicriteria analysis. Environ. Sci. Pollut. Res. 2019, 26, 27073–27086. [Google Scholar]
- Ouyang, W.; Gao, X.; Wei, P.; Gao, B.; Lin, C.Y.; Hao, F.H. A review of diffuse pollution modeling and associated implications for watershed management in China. J. Soils Sediments 2017, 17, 1527–1536. [Google Scholar]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar]
- Hua, L.L.; Li, W.C.; Zhai, L.M.; Yen, H.; Lei, Q.L.; Liu, H.B.; Ren, T.Z.; Xia, Y.; Zhang, F.L.; Fan, X.P. An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. J. Hydrol. 2019, 571, 322–331. [Google Scholar]
- Wu, Y.; Liu, J.; Shen, R.; Fu, B. Mitigation of nonpoint source pollution in rural areas: From control to synergies of multi ecosystem services. Sci. Total Environ. 2017, 607–608, 1376–1380. [Google Scholar]
- Li, Z.; Du, C. Current status and research hotspots of pesticide-containing wastewater treatment: Systematic review and bibliometric analysis. J. Water Process Eng. 2025, 69, 106738. [Google Scholar]
- Lee, S.; Maniquiz, M.C.; Kim, L.H. Appropriate determination method of removal efficiency for nonpoint source best management practices. Desalin. Water Treat. 2012, 48, 138–147. [Google Scholar]
- de Souza, M.M.; Gastaldini, M.D.C.; Pivetta, G.G. Nonpoint pollution load in river catchments with different anthropic impacts: A case study in Southern Brazil. Environ. Earth Sci. 2017, 76, 17. [Google Scholar]
- Angello, Z.A.; Behailu, B.M.; Tränckner, J. Integral Application of Chemical Mass Balance and Watershed Model to Estimate Point and Nonpoint Source Pollutant Loads in Data-Scarce Little Akaki River, Ethiopia. Sustainability 2020, 12, 18. [Google Scholar] [CrossRef]
- Buchanan, B.P.; Archibald, J.A.; Easton, Z.M.; Shaw, S.B.; Schneider, R.L.; Walter, M.T. A phosphorus index that combines critical source areas and transport pathways using a travel time approach. J. Hydrol. 2013, 486, 123–135. [Google Scholar]
- Huang, H.B.; Ouyang, W.; Wu, H.T.; Liu, H.B.; Andrea, C. Long-term diffuse phosphorus pollution dynamics under the combined influence of land use and soil property variations. Sci. Total Environ. 2017, 579, 1894–1903. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Meta-Analysis of Phosphorus Loss from No-Till Soils. J. Environ. Qual. 2017, 46, 1028–1037. [Google Scholar]
- Roebeling, P.C.; Cunha, M.C.; Arroja, L.; van Grieken, M.E. Abatement vs. treatment for efficient diffuse source water pollution management in terrestrial-marine systems. Water Sci. Technol. 2015, 72, 730–737. [Google Scholar]
- Gunes, K.; Tuncsiper, B.; Drizo, A.; Masi, F.; Ayaz, S.; Tufekci, H. Constructed and riverine wetlands design considerations for domestic and agricultural diffuse pollution treatment-a case study from Turkey. Desalin. Water Treat. 2016, 57, 11988–11998. [Google Scholar]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems Across Urban and Agricultural Watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [PubMed]
- Gao, J.; Yuan, Z.; Liu, X.; Xia, X.; Huang, X.; Dong, Z. Improving air pollution control policy in China—A perspective based on cost–benefit analysis. Sci. Total Environ. 2016, 543 Pt A, 307–314. [Google Scholar]
- Molinos-Senante, M.; Hernández-Sancho, F.; Sala-Garrido, R. Economic feasibility study for wastewater treatment: A cost–benefit analysis. Sci. Total Environ. 2010, 408, 4396–4402. [Google Scholar]
- Corominas, L.; Byrne, D.M.; Guest, J.S.; Hospido, A.; Roux, P.; Shaw, A.; Short, M.D. The application of life cycle assessment (LCA) to wastewater treatment: A best practice guide and critical review. Water Res. 2020, 184, 116058. [Google Scholar]
- Luthin, A.; Backes, J.G.; Traverso, M. A framework to identify environmental-economic trade-offs by combining life cycle assessment and life cycle costing—A case study of aluminium production. J. Clean. Prod. 2021, 321, 128902. [Google Scholar]
- Li, C.; Wu, K.; Wu, J. A bibliometric analysis of research on haze during 2000–2016. Environ. Sci. Pollut. Res. Int. 2017, 24, 24733–24742. [Google Scholar] [PubMed]
- Cao, T.; Han, D.; Song, X. Past, present, and future of global seawater intrusion research a bibliometric analysis. J. Hydrol. 2021, 603, 126844. [Google Scholar]
- Elie, L.; Granier, C.; Rigot, S. The different types of renewable energy finance: A Bibliometric analysis. Energy Econ. 2021, 93, 104997. [Google Scholar]
- Wang, X.; Xu, Z.; Škare, M. A bibliometric analysis of Economic Research-Ekonomska Istraživanja (2007–2019). Econ. Res.-Ekon. Istraž. 2020, 33, 865–886. [Google Scholar]
- Luo, M.; Liu, X.X.; Legesse, N.; Liu, Y.; Wu, S.; Han, F.X.; Ma, Y.H. Evaluation of Agricultural Non-point Source Pollution: A Review. Water Air Soil Pollut. 2023, 234, 657. [Google Scholar]
- Wang, D.S.; Gao, X.; Wu, S.Q.; Zhao, M.; Zheng, X.Y.; Wang, Z.Q.; Zhang, Y.J.; Fan, C.Z. A Comprehensive Review on Ecological Buffer Zone for Pollutants Removal. Water 2024, 16, 2172. [Google Scholar] [CrossRef]
- Jyotish, K.; Devi, A.S.; Usha, K.; Singh, K.K. An analysis of studies on non-point sources of eutrophication during 1991–2023: A bibliometric approach. Appl. Ecol. Environ. Res. 2024, 22, 5131–5147. [Google Scholar]
- Chen, C. CiteSpace: A Practical Guide for Mapping Scientific Literature; Nova Science Publishers: Hauppauge, NY, USA, 2016. [Google Scholar]
- Havens, K.E.; Kukushima, T.; Xie, P.; Iwakuma, T.; James, R.T.; Takamura, N.; Hanazato, T.; Yamamoto, T. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environ. Pollut. 2001, 111, 263–272. [Google Scholar] [PubMed]
- Osborne, L.L.; Kovacic, D.A. Riparian vegetated buffer strips in water-quality restoration and stream management. Freshw. Biol. 1993, 29, 243–258. [Google Scholar]
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environ. Model. Softw. 2007, 22, 464–475. [Google Scholar]
- Easton, Z.M.; Fuka, D.R.; Walter, M.T.; Cowan, D.M.; Schneiderman, E.M.; Steenhuis, T.S. Re-conceptualizing the soil and water assessment tool (SWAT) model to predict runoff from variable source areas. J. Hydrol. 2008, 348, 279–291. [Google Scholar]
- United Nations. Transforming our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015. [Google Scholar]
- Vigiak, O.; Grizzetti, B.; Zanni, M.; Dorati, C.; Bouraoui, F.; Aloe, A.; Pistocchi, A. Estimation of Domestic and Industrial Waste Emissions to European Waters in the 2010s; EU Science Hub: Brussels, Belgium, 2018. [Google Scholar]
- Action Plan for Water Pollution Prevention and Control; State Council of the People’s Republic of China: Beijing, China, 2015. Available online: https://www.gov.cn/zhengce/content/2015-04/16/content_9613.htm (accessed on 7 July 2025).
- Xia, Y.F.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.B.; Zhu, L.F.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X.; et al. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorousfrom agricultural runoff: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar]
- Shen, Z.Y.; Hou, X.S.; Li, W.; Aini, G. Relating landscape characteristics to non-point source pollution in a typical urbanized watershed in the municipality of Beijing. Landsc. Urban Plan. 2014, 123, 96–107. [Google Scholar]
- Shen, Z.Y.; Hou, X.S.; Li, W.; Aini, G.Z.; Chen, L.; Gong, Y.W. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecol. Indic. 2015, 48, 417–427. [Google Scholar]
- Shen, Z.Y.; Qiu, J.L.; Hong, Q.; Chen, L. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region. Sci. Total Environ. 2014, 493, 138–146. [Google Scholar]
- Shen, Z.Y.; Zhong, Y.C.; Huang, Q.; Chen, L. Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Res. 2015, 68, 563–571. [Google Scholar] [PubMed]
- Collins, A.L.; Walling, D.E.; Leeks, G.J.L. Source type ascription for fluvial suspended sediment based on a quantitative composite fingerprinting technique. Catena 1997, 29, 1–27. [Google Scholar]
- Kemp, P.; Sear, D.; Collins, A.; Naden, P.; Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process. 2011, 25, 1800–1821. [Google Scholar]
- Giri, S.; Nejadhashemi, A.P.; Woznicki, S.; Zhang, Z. Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrol. Process. 2014, 28, 431–445. [Google Scholar]
- Lee, D.Y.; Lee, H.; Trevors, J.T.; Weir, S.C.; Thomas, J.L.; Habash, M. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario. Water Res. 2014, 53, 123–131. [Google Scholar]
- Hua, B.; Yang, J.; Liu, F.J.; Zhu, G.C.; Deng, B.L.; Mao, J.D. Characterization of dissolved organic matter/nitrogen by fluorescence excitation-emission matrix spectroscopy and X-ray photoelectron spectroscopy for watershed management. Chemosphere 2018, 201, 708–715. [Google Scholar]
- Lencha, S.M.; Ulsido, M.D.; Muluneh, A. Evaluation of Seasonal and Spatial Variations in Water Quality and Identification of Potential Sources of Pollution Using Multivariate Statistical Techniques for Lake Hawassa Watershed, Ethiopia. Appl. Sci. 2021, 11, 8991. [Google Scholar]
- Liu, R.M.; Zhang, P.P.; Wang, X.J.; Chen, Y.X.; Shen, Z.Y. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River watershed. Agric. Water Manag. 2013, 117, 9–18. [Google Scholar]
- Chahor, Y.; Casalí, J.; Giménez, R.; Bingner, R.L.; Campo, M.A.; Goñi, M. Evaluation of the AnnAGNPS model for predicting runoff and sediment yield in a small Mediterranean agricultural watershed in Navarre (Spain). Agric. Water Manag. 2014, 134, 24–37. [Google Scholar]
- Wang, S.; Wang, Y.Q.; Wang, Y.J.; Wang, Z. Assessment of influencing factors on non-point source pollution critical source areas in an agricultural watershed. Ecol. Indic. 2022, 141, 109084. [Google Scholar]
- Huang, J.L.; Hong, H.S. Comparative study of two models to simulate diffuse nitrogen and phosphorus pollution in a medium-sized watershed, southeast China. Estuar. Coast. Shelf Sci. 2010, 86, 387–394. [Google Scholar]
- Liu, T.T.; Bruins, R.J.F.; Heberling, M.T. Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis. Sustainability 2018, 10, 432. [Google Scholar] [CrossRef]
- Giri, S.; Nejadhashemi, A.P.; Woznicki, S.A. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. J. Environ. Manag. 2012, 103, 24–40. [Google Scholar]
- Yan, W.; Wang, J.H.; Zou, H.; Min, M.; Duan, X.J. Modeling economic-environmental-ecological trade-offs for non-point source control strategies: A case study of Dianchi lake watershed, China. Ecol. Indic. 2024, 158, 111494. [Google Scholar]
- Xie, H.; Chen, L.; Shen, Z.Y. Assessment of Agricultural Best Management Practices Using Models: Current Issues and Future Perspectives. Water 2015, 7, 1088–1108. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Hong, Q.; Yu, H.; Niu, J.F. Parameter uncertainty analysis of non-point source pollution from different land use types. Sci. Total Environ. 2010, 408, 1971–1978. [Google Scholar]
- Chen, Y.; Lu, B.B.; Xu, C.Y.; Chen, X.W.; Liu, M.B.; Gao, L.; Deng, H.J. Uncertainty Evaluation of Best Management Practice Effectiveness Based on the AnnAGNPS Model. Water Resour. Manag. 2022, 36, 1307–1321. [Google Scholar]
- Venishetty, V.; Parajuli, P.B. Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed. Agriculture 2022, 12, 477. [Google Scholar] [CrossRef]
- Aggarwal, S.; Sharma, V.; Rallapalli, S.; Lenhart, C.; Magner, J. Farmer adoption-based prompt networking and modeling for targeting optimal agro-conservation practices. Environ. Model. Softw. 2024, 177, 106060. [Google Scholar]
- Alcon, F.; Zabala, J.A.; Martínez-Paz, J.M. Assessment of social demand heterogeneity to inform agricultural diffuse pollution mitigation policies. Ecol. Econ. 2022, 191, 107216. [Google Scholar]
- Cole, L.J.; Stockan, J.; Helliwell, R. Managing riparian buffer strips to optimise ecosystem services: A review. Agric. Ecosyst. Environ. 2020, 296, 106891. [Google Scholar]
- Kim, J.; Kim, D. The Optimal Capacity Estimation of Nature-Based Facilities Considering Land Cover Characteristics. Water 2025, 17, 1323. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Dekamin, M. Sustainability assessment of corn production in conventional and conservation tillage systems. J. Clean. Prod. 2022, 351, 131508. [Google Scholar]
- Lubell, M.; Fulton, A. Local diffusion networks act as pathways to sustainable agriculture in the Sacramento River Valley. Calif. Agric. 2007, 61, 131–137. [Google Scholar]
- Pannell, D.J.; Llewellyn, R.S.; Corbeels, M. The farm-level economics of conservation agriculture for resource-poor farmers. Agric. Ecosyst. Environ. 2014, 187, 52–64. [Google Scholar]
- Pan, Y.; Guo, J.; Yang, L.; Yuan, Q.; Ren, Z.; Wang, L. Numerical Simulations of Non-Point Source Pollution in a Small Urban Catchment: Identification of Pollution Risk Areas and Effectiveness of Source-Control Measures. Water 2021, 13, 96. [Google Scholar]
- Zong, M.; Hu, Y.M.; Liu, M.; Li, C.L.; Wang, C.; Liu, J.X. Quantifying the Contribution of Agricultural and Urban Non-Point Source Pollutant Loads in Watershed with Urban Agglomeration. Water 2021, 13, 1385. [Google Scholar] [CrossRef]
- Chen, Y.N.; Fan, C.H.; Seres, M.; Seresová, M.; Vymazal, J.; Pan, S.Y. Lifecycle environmental benefits of integrated rational fertilization, biochar, and constructed wetland in mitigating nutrient loading. Agric. Water Manag. 2025, 307, 109202. [Google Scholar]
- Sustainable Development Goal 6: Synthesis Report 2018 on Water and Sanitation; United Nations: New York, NY, USA, 2018; Available online: https://www.unwater.org/publications/highlights-sdg-6-synthesis-report-2018-on-water-and-sanitation/ (accessed on 7 July 2025).
- Brill, G.; Shiao, T.; Kammeyer, C.; Diringer, S.; Vigerstol, K.; Ofosu-Amaah, N.; Matosich, M.; Müller-Zantop, C.; Larson, W.; Dekker, T. Benefit Accounting of Nature-Based Solutions for Watersheds: Guide; International Union for Conservation of Nature: Gland, Switzerland, 2021. [Google Scholar]
Rank of Total Publication Number | Country | Number of Publications | Number of Citations | Average Citations per Article | Total Link Strength |
---|---|---|---|---|---|
1 | China | 479 | 10,869 | 22.69 | 156 |
2 | USA | 322 | 13,181 | 40.93 | 146 |
3 | England | 102 | 4049 | 39.70 | 80 |
4 | Canada | 59 | 2276 | 38.58 | 63 |
5 | Australia | 52 | 1702 | 32.73 | 54 |
Rank of Total Publication Number | Organization | Number of Publications | Number of Citations | Average Citations per Article | Total Link Strength |
---|---|---|---|---|---|
1 | Chinese Academy of Sciences (CAS) | 124 | 3355 | 27.06 | 139 |
2 | Beijing Normal University (BNU) | 69 | 2439 | 35.35 | 30 |
3 | University of Chinese Academy of Sciences (UCAS) | 36 | 771 | 21.42 | 56 |
4 | United States Department of Agriculture Agricultural Research Service (USDA-ARS) | 28 | 1100 | 39.64 | 28 |
5 | Chinese Research Academy of Environmental Sciences (CRAES) | 26 | 295 | 11.35 | 20 |
Author | Country | Total Publications | Total Citations | Average Citations per Article |
---|---|---|---|---|
Shen, Zhenyao | China | 21 | 968 | 46.10 |
Liu, Hongbin | China | 19 | 353 | 18.58 |
Ouyang, Wei | China | 18 | 666 | 37 |
Chen, Lei | China | 16 | 567 | 35.44 |
Zhang, Liang | China | 11 | 161 | 14.64 |
Collins, Adrian L. | UK | 9 | 544 | 60.44 |
Liu, Ruimin | China | 9 | 499 | 55.44 |
Hao, Fanghua | China | 9 | 416 | 46.22 |
Liu, Yong | China | 8 | 146 | 18.25 |
Zhai, Limei | China | 8 | 146 | 18.25 |
Rank of Total Publication Number | Journals | Number of Publications | Number of Citations | Average Citations per Article | Total Link Strength |
---|---|---|---|---|---|
1 | Science of the Total Environment | 108 | 5172 | 47.89 | 450 |
2 | Water Science and Technology | 82 | 1025 | 12.50 | 76 |
3 | Water | 77 | 878 | 11.40 | 220 |
4 | Journal of Environmental Management | 72 | 1692 | 23.50 | 271 |
5 | Environmental Science and Pollution Research | 55 | 920 | 16.73 | 161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Q.; Lin, C.; Li, S.; Guo, F. A Bibliometric Analysis and Visualization of the Assessment of Non-Point Source Pollution Control. Water 2025, 17, 2056. https://doi.org/10.3390/w17142056
Geng Q, Lin C, Li S, Guo F. A Bibliometric Analysis and Visualization of the Assessment of Non-Point Source Pollution Control. Water. 2025; 17(14):2056. https://doi.org/10.3390/w17142056
Chicago/Turabian StyleGeng, Qijie, Changkun Lin, Shan Li, and Fei Guo. 2025. "A Bibliometric Analysis and Visualization of the Assessment of Non-Point Source Pollution Control" Water 17, no. 14: 2056. https://doi.org/10.3390/w17142056
APA StyleGeng, Q., Lin, C., Li, S., & Guo, F. (2025). A Bibliometric Analysis and Visualization of the Assessment of Non-Point Source Pollution Control. Water, 17(14), 2056. https://doi.org/10.3390/w17142056