Pollution Characteristics and Risk Assessment of Microplastics and Plasticizers Around a Typical Chemical Industrial Park
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Identification of MPs
2.3. Detection of DEHP
2.4. Risk Assessment of MPs
2.5. Risk Assessment of DEHP
2.6. Quality Control and Assurance
3. Results and Discussion
3.1. Pollution Characteristics of MPs and DEHP in Different Samples
3.1.1. Abundance and Pollution-Type Characteristics of MPs in Water and Sediments
Location | Abundance | Main Morphologies | Main Size (μm) | Main Types | References | |
---|---|---|---|---|---|---|
Water | Tanchon stream, Korea | 5.3–87.3 items/m3 | Fragment | <1000 | PE (41%), PP (22%) | [43] |
Xiang Jiang River, China | 2173–3998 items/L | Fiber, fragment | <10 | PP, PET, PE | [45] | |
Helmand River, Iran | 15.4–51.8 items/ m3 | fiber (46%), fragment (43.5%) | 100–500 | PS, PE | [46] | |
The main rivers on the Qinghai-Tibet Plateau, China | 2825–11,865 items/ m3 | Fiber (71.5%) | <500 (58.9%) | PP, PET | [4] | |
A river that receives wastewater, China | 155 ± 20–2250 ± 469 items/L | Fiber (36.9%) | 500–1000 (30.5%) | PE (25.1%), PP (24.3%) | This study | |
Sediment | Tanchon stream, Korea | 493.1 ± 136.0 (upstream), 380.0 ± 144.2 items/kg (downstream) | Fragment | <1000 | PE (49%), PP (18%) | [43] |
The main rivers on the Qinghai-Tibet Plateau, China | 59.1–438.0 items/kg | Fiber | <500 (73.4%) | PP, PET | [4] | |
Vembanad Lake, India | 35 ± 49.5–1414 ± 182 items/kg | Fragment | <500 | PE, PP | [53] | |
The Yellow River, China | 90–750 items/kg | Fiber (88.7%) | <500 (36.8%) | PET (36%), PE (27%) | [44] | |
A river that receives wastewater, China | 410 ± 57–3245 ± 430 | Fragment (42.0%) | <50 (36.0%) | PET (29.2%), PE (25.1%) | This study |
3.1.2. Size and Morphology Characteristics of MPs Pollution in Water and Sediments
3.1.3. Occurrence of DEHP in Water and Sediments
3.1.4. Concentration Analysis of DEHP Adsorbed on MPs
3.2. Risk Assessment of MPs and DEHP in Different Samples
3.2.1. Risk Assessment of MPs in Water and Sediment
3.2.2. Risk Assessment of DEHP in Water and Sediment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, H.; Pu, S.Y.; Liu, S.B.; Bai, Y.C.; Mandal, S.; Xing, B.S. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 2020, 261, 114089. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.L.; Kim, J.-G.; Kim, H.-B.; Choi, J.H.; Fai Tsang, Y.; Baek, K. Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: A review. Chem. Eng. J. 2021, 410, 128381. [Google Scholar] [CrossRef]
- Gong, J.; Xie, P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere 2020, 254, 126790. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Han, Z.; Su, G.; Hou, M.; Liu, X.; Zhao, X.; Hua, Y.; Shi, B.; Meng, J.; Wang, M. New insights into the distribution, potential source and risk of microplastics in Qinghai-Tibet Plateau. Environ. Int. 2023, 175, 141378. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Lu, H.; Yao, T.; Xue, Y.; Yin, C.; Tang, M. Spatial characteristics of microplastics in the high-altitude area on the Tibetan Plateau. J. Hazard. Mater. 2021, 417, 126034. [Google Scholar] [CrossRef]
- De Marco, G.; Conti, G.O.; Giannetto, A.; Cappello, T.; Galati, M.; Iaria, C.; Pulvirenti, E.; Capparucci, F.; Mauceri, A.; Ferrante, M.; et al. Embryotoxicity of polystyrene microplastics in zebrafish Danio rerio. Environ. Res. 2022, 208, 112552. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Qiao, R.X.; Zhang, S.Y.; Wang, G.X. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio). J. Hazard. Mater. 2021, 403, 123663. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.; Sanchez-Moreno, P.; Caputo, G.; Gatto, F.; Veronesi, M.; Bardi, G.; Catelani, T.; Guarnieri, D.; Athanassiou, A.; Pompa, P.P.; et al. Laser Ablation as a Versatile Tool To Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano 2018, 12, 7690–7700. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, Y.; Zhang, T.; Zhang, F.; Ren, H.; Zhang, Y. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status. Environ. Sci. Technol. 2021, 56, 414–421. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 163, 107199. [Google Scholar] [CrossRef]
- Kimber, I.; Dearman, R.J. An assessment of the ability of phthalates to influence immune and allergic responses. Toxicology 2010, 271, 73–82. [Google Scholar] [CrossRef]
- Erythropel, H.C.; Maric, M.; Nicell, J.A.; Leask, R.L.; Yargeau, V. Leaching of the plasticizer di(2-ethylhexyl)phthalate (DEHP) from plastic containers and the question of human exposure. Appl. Microbiol. Biotechnol. 2014, 98, 9967–9981. [Google Scholar] [CrossRef]
- Nikki, R.; Abdul Jaleel, K.U.; Abdul Razaque, M.A.; Gupta, P.; Rathore, C.; Saha, M.; Ramzi, A.; Gireesh Kumar, T.R. Assessment of hazardous microplastic polymers and phthalic acid esters in an invasive mollusk (Mytella strigata) from the Cochin estuary, southwest coast of India: Unraveling ecosystem risks. Sci. Total Environ. 2025, 967, 178798. [Google Scholar] [CrossRef]
- Velez, J.F.M.; Shashoua, Y.; Syberg, K.; Khan, F.R. Considerations on the use of equilibrium models for the characterisation of HOC-microplastic interactions in vector studies. Chemosphere 2018, 210, 359–365. [Google Scholar] [CrossRef]
- Lee, Y.S.; Lim, J.E.; Lee, S.; Moon, H.B. Phthalates and non-phthalate plasticizers in sediment from Korean coastal waters: Occurrence, spatial distribution, and ecological risks. Mar. Pollut. Bull. 2020, 154, 111119. [Google Scholar] [CrossRef]
- Li, X.; Yin, P.; Zhao, L. Phthalate esters in water and surface sediments of the Pearl River Estuary: Distribution, ecological, and human health risks. Environ. Sci. Pollut. Res. Int. 2016, 23, 19341–19349. [Google Scholar] [CrossRef]
- Bi, M.Y.; Liu, W.; Luan, X.Y.; Li, M.Y.; Liu, M.; Liu, W.Q.; Cui, Z.J. Production, Use, and Fate of Phthalic Acid Esters for Polyvinyl Chloride Products in China. Environ. Sci. Technol. 2021, 55, 13980–13989. [Google Scholar] [CrossRef]
- Kumari, M.; Pulimi, M. Phthalate esters: Occurrence, toxicity, bioremediation, and advanced oxidation processes. Water Sci. Technol. 2023, 87, 2090–2115. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, Q.; Kannan, K. Phthalate metabolites in urine from China, and implications for human exposures. Environ. Int. 2011, 37, 893–898. [Google Scholar] [CrossRef]
- Burns, J.S.; Sergeyev, O.; Lee, M.M.; Williams, P.L.; Mínguez-Alarcón, L.; Plaku-Alakbarova, B.; Sokolov, S.; Kovalev, S.; Koch, H.M.; Lebedev, A.T.; et al. Associations of prepubertal urinary phthalate metabolite concentrations with pubertal onset among a longitudinal cohort of boys. Environ. Res. 2022, 212, 113218. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-H.; Yang, C.-L.; Kao, C.-S. Assessment model for equipment risk management: Petrochemical industry cases. Saf. Sci. 2012, 50, 1056–1066. [Google Scholar] [CrossRef]
- Deng, L.; Xi, H.; Wan, C.; Fu, L.; Wang, Y.; Wu, C. Is the petrochemical industry an overlooked critical source of environmental microplastics? J. Hazard. Mater. 2023, 451, 131199. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22. [Google Scholar] [CrossRef]
- Balabantaray, S.R.; Singh, P.K.; Pandey, A.K.; Chaturvedi, B.K.; Sharma, A.K. Forecasting global plastic production and microplastic emission using advanced optimised discrete grey model. Environ. Sci. Pollut. Res. 2023, 30, 123039–123054. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.T.; Myers, E.; Schober, D.; Korzin, A.; Schuhen, K. Beyond Microplastics: Implementation of a Two-Stage Removal Process for Microplastics and Chemical Oxygen Demand in Industrial Wastewater Streams. Water 2024, 16, 268. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, L.; Jia, Y.; Zhang, Y.; Dong, Q.; Huang, C. A Study on Environmental Bisphenol A Pollution in Plastics Industry Areas. Water Air Soil Pollut. 2017, 228, 98. [Google Scholar] [CrossRef]
- Kabir, A.H.M.E.; Sekine, M. Wastewater treatment plants elevating microplastic abundances, ecological risks, and loads in Japanese rivers: A source-to-sink perspective. Environ. Sci. Pollut. Res. 2023, 30, 96499–96514. [Google Scholar] [CrossRef]
- Ngeno, E.; Ongulu, R.; Orata, F.; Matovu, H.; Shikuku, V.; Onchiri, R.; Mayaka, A.; Majanga, E.; Getenga, Z.; Gichumbi, J.; et al. Endocrine disrupting chemicals in wastewater treatment plants in Kenya, East Africa: Concentrations, removal efficiency, mass loading rates and ecological impacts. Environ. Res. 2023, 237, 117076. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, Y.; Xi, H.; Wan, C.; Yu, Y.; Wu, C. The destiny of microplastics in one typical petrochemical wastewater treatment plant. Sci. Total Environ. 2023, 896, 165274. [Google Scholar] [CrossRef]
- Shehab, Z.N.; Jamil, N.R.; Aris, A.Z. Modelling the fate and transport of colloidal particles in association with BPA in river water. J. Environ. Manag. 2020, 274, 111141. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.W.; Jiang, J.L.; Xia, J.; Yan, C.C.; Cui, C.Z. Occurrence and fate of microplastics from a water source to two different drinking water treatment plants in a megacity in eastern China. Environ. Pollut. 2024, 346, 123546. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Malakootian, M.; Dobaradaran, S.; Hashemi, M.; Jaafarzadeh, N. Occurrence, seasonal distribution, and ecological risk assessment of microplastics and phthalate esters in leachates of a landfill site located near the marine environment: Bushehr port, Iran as a case. Sci. Total Environ. 2022, 842, 156838. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.S.; Po, B.H.K.; Li, L.; Wong, A.Y.M.; Kong, R.Y.C.; Li, L.; Tse, W.K.F.; Wong, C.K.C.; Cheung, S.G.; Lai, K.P. Bisphenol A and its analogues in sedimentary microplastics of Hong Kong. Mar. Pollut. Bull. 2021, 164, 112090. [Google Scholar] [CrossRef]
- Mai, Y.; Peng, S.; Lai, Z.; Wang, X. Measurement, quantification, and potential risk of microplastics in the mainstream of the Pearl River (Xijiang River) and its estuary, Southern China. Environ. Sci. Pollut. Res. Int. 2021, 28, 53127–53140. [Google Scholar] [CrossRef] [PubMed]
- Lithner, D.; Larsson, A.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef]
- Xu, P.; Peng, G.; Su, L.; Gao, Y.; Gao, L.; Li, D. Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China. Mar. Pollut. Bull. 2018, 133, 647–654. [Google Scholar] [CrossRef]
- Peng, G.; Xu, P.; Zhu, B.; Bai, M.; Li, D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ. Pollut. 2018, 234, 448–456. [Google Scholar] [CrossRef]
- Paluselli, A.; Fauvelle, V.; Galgani, F.; Sempere, R. Phthalate Release from Plastic Fragments and Degradation in Seawater. Environ. Sci. Technol. 2019, 53, 166–175. [Google Scholar] [CrossRef]
- EC, European Commission. Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance, Part II; Office for Official Publications of the European Communities: Luxembourg, 2003. [Google Scholar]
- Zuccarello, P.; Ferrante, M.; Cristaldi, A.; Copat, C.; Grasso, A.; Sangregorio, D.; Fiore, M.; Oliveri Conti, G. Exposure to microplastics (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res. 2019, 157, 365–371. [Google Scholar]
- Ahmed, S.F.; Islam, N.; Tasannum, N.; Mehjabin, A.; Momtahin, A.; Chowdhury, A.A.; Almomani, F.; Mofijur, M. Microplastic removal and management strategies for wastewater treatment plants. Chemosphere 2024, 347, 140648. [Google Scholar] [CrossRef] [PubMed]
- Park, T.J.; Lee, S.H.; Lee, M.S.; Lee, J.K.; Park, J.H.; Zoh, K.D. Distributions of Microplastics in Surface Water, Fish, and Sediment in the Vicinity of a Sewage Treatment Plant. Water 2020, 12, 3333. [Google Scholar] [CrossRef]
- Du, L.; Pan, B.Z.; Han, X.; Li, D.B.; Meng, Y.T.; Liu, Z.Q.; Xiong, X.; Li, M. Enhanced ecological risk of microplastic ingestion by fish due to fragmentation and deposition in heavily sediment-laden river. Water Res. 2025, 278, 123306. [Google Scholar] [CrossRef]
- Shen, M.; Zeng, Z.; Wen, X.; Ren, X.; Zeng, G.; Zhang, Y.; Xiao, R. Presence of microplastics in drinking water from freshwater sources: The investigation in Changsha, China. Environ. Sci. Pollut. Res. Int. 2021, 28, 42313–42324. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, H.; Ghayebzadeh, M.; Ganji, F.; Mousavi, S.; Azizi, N. Tracking microplastics contamination in drinking water in Zahedan, Iran: From source to consumption taps. Sci. Total Environ. 2023, 872, 162121. [Google Scholar] [CrossRef]
- Blair, R.M.; Waldron, S.; Gauchotte-Lindsay, C. Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period. Water Res. 2019, 163, 114909. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
- Murphy, F.; Ewins, C.; Carbonnier, F.; Quinn, B. Wastewater Treatment Works (WwTW) as a Source of Microplastics in the Aquatic Environment. Environ. Sci. Technol. 2016, 50, 5800–5808. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, M.; Cao, X.; Liu, Z. Occurrence of microplastics pollution in the Yangtze River: Distinct characteristics of spatial distribution and basin-wide ecological risk assessment. Water Res. 2023, 229, 119431. [Google Scholar] [CrossRef]
- Balthazar-Silva, D.; Turra, A.; Moreira, F.T.; Camargo, R.M.; Oliveira, A.L.; Barbosa, L.; Gorman, D. Rainfall and Tidal Cycle Regulate Seasonal Inputs of Microplastic Pellets to Sandy Beaches. Front. Environ. Sci. 2020, 8, 123. [Google Scholar] [CrossRef]
- Roshni, K.; Renjithkumar, C.R.; Amal, R.; Devipriya, S.P. Characterization and risk assessment of microplastics accumulated in sediments and benthic molluscs in the mangrove wetlands along the south-west coast of India. Mar. Pollut. Bull. 2025, 216, 117955. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, T.; Chen, W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ. 2020, 700, 134520. [Google Scholar] [CrossRef] [PubMed]
- Estahbanati, S.; Fahrenfeld, N.L. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water. Chemosphere 2016, 162, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 2017, 7, 46687. [Google Scholar] [CrossRef]
- Filella, M. Questions of size and numbers in environmental research on microplastics: Methodological and conceptual aspects. Environ. Chem. 2015, 12, 527–538. [Google Scholar] [CrossRef]
- Jiang, J.H.; Wang, X.W.; Ren, H.Y.; Cao, G.L.; Xie, G.J.; Xing, D.F.; Liu, B.F. Investigation and fate of microplastics in wastewater and sludge filter cake from a wastewater treatment plant in China. Sci. Total Environ. 2020, 746, 141378. [Google Scholar] [CrossRef]
- Li, J.Y.; Liu, H.H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, Y.; Tan, Y.; Jiang, C.; Li, T.; Yang, Y.; Zhang, Z. Phthalate esters in the Largest River of Asia: An exploration as indicators of microplastics. Sci. Total Environ. 2023, 902, 166058. [Google Scholar] [CrossRef]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef]
- Dueñas-Moreno, J.; Vázquez-Tapia, I.; Mora, A.; Cervantes-Avilés, P.; Mahlknecht, J.; Capparelli, M.; Kumar, M.; Wang, C.Q. Occurrence, ecological and health risk assessment of phthalates in a polluted urban river used for agricultural land irrigation in central Mexico. Environ. Res. 2024, 240, 117454. [Google Scholar] [CrossRef]
- Hajiouni, S.; Mohammadi, A.; Ramavandi, B.; Arfaeinia, H.; De-la-Torre, G.E.; Tekle-Röttering, A.; Dobaradaran, S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. Sci. Total Environ. 2022, 806, 150559. [Google Scholar] [CrossRef] [PubMed]
- Sim, W.; Ekpe, O.D.; Lee, E.-H.; Arafath, S.Y.; Lee, M.; Kim, K.H.; Oh, J.-E. Distribution and ecological risk assessment of priority water pollutants in surface river sediments with emphasis on industrially affected areas. Chemosphere 2024, 352, 141275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Ma, Z.R.; Cai, Y.Y.; Li, H.R.; Ying, G.G. Agricultural Plastic Pollution in China: Generation of Plastic Debris and Emission of Phthalic Acid Esters from Agricultural Films. Environ. Sci. Technol. 2021, 55, 12459–12470. [Google Scholar] [CrossRef]
- Xia, Y.; Niu, S.; Yu, J. Microplastics as vectors of organic pollutants in aquatic environment: A review on mechanisms, numerical models, and influencing factors. Sci. Total Environ. 2023, 887, 164008. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.F.; Liu, G.Z.; Zhu, Z.L.; Wang, S.C.; Zhao, F.F. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere 2019, 214, 688–694. [Google Scholar] [CrossRef]
- Shi, J.; Lv, B.; Wang, B.; Xie, B. Insight into the responses of antibiotic resistance genes in microplastic biofilms to zinc oxide nanoparticles and zinc ions pressures in landfill leachate. J. Hazard. Mater. 2023, 459, 132096. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, J.; Wu, J.; Wang, J.; Luo, Y. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol. Environ. Saf. 2020, 187, 109852. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Zhang, J.D.; Cai, C.Y.; Breider, F.; Tao, S.; Liu, W.X. Distribution, partitioning behavior, and ecological risk assessment of phthalate esters in sediment particle-pore water systems from the main stream of the Haihe River, Northern China. Sci. Total Environ. 2020, 745, 141131. [Google Scholar] [CrossRef]
Pollution Load Index | Category | Polymer Hazard Index | Category | Potential Ecological Risk Index | Category | Risk Quotient | Category |
---|---|---|---|---|---|---|---|
<10 | I | 0–10 | I | <150 | Minor | <0.1 | Low |
- | - | 10–100 | II | 150–300 | Medium | - | - |
10–20 | II | 100–1000 | III | 300–600 | High | 0.1–1 | Medium |
20–30 | III | 1000–1500 | IV | 600–1200 | Danger | 1–10 | High |
>30 | IV | >1500 | V | >1200 | Extreme danger | >10 | Very high |
Polymer | Monomer | Density (g/cm3) | Main Applications | Score |
---|---|---|---|---|
Polyethylene (PE) | Ethylene | 0.91–0.96 | Shopping bags, cosmetics bottles | 11 |
Polypropylene (PP) | Propylene | 0.85–0.94 | Ropes, food packaging, pipelines | 1 |
Polyvinyl chloride (PVC) | Vinyl chloride | 1.41 | Disposable plastic bags, pipes, flooring | 10,551 |
Polystyrene (PS) | Styrene | 1.05 | Expanded polystyrene, CDs, building materials | 30 |
Polyethylene glycol terephthalate (PET) | Ethylene glycol | 1.38 | Drink bottles, clothes, food packaging | 4 |
Polyacrylonitrile (PAN) | Acrylonitrile | 1.15 | Clothes, tents, medical equipment | 11,521 |
Polycarbonate (PC) | Phosgene | 1.2 | Engineered plastic parts, electronics | 610 |
Polyamide (PA) | Caprolactam | 1.10–1.15 | Textiles, mechanical components | 50 |
Population | Species | Toxicity Data (μg/L) | AF | PNECsediment (μg/g) |
---|---|---|---|---|
Algae | Pseudokirchneriella subcapitata | 96 h, population, EC50 = 100 | 1000 | 3.25 |
Crustaceans | Mytilus edulis | 21 d, mortality, NOEC = 42 | 50 | 13.6 |
Fish | Gasterosteus aculeatus | 28 d, mortality, NOEC = 300 | 50 | 32.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Ai, J.; Jiang, J. Pollution Characteristics and Risk Assessment of Microplastics and Plasticizers Around a Typical Chemical Industrial Park. Water 2025, 17, 1996. https://doi.org/10.3390/w17131996
Wang H, Ai J, Jiang J. Pollution Characteristics and Risk Assessment of Microplastics and Plasticizers Around a Typical Chemical Industrial Park. Water. 2025; 17(13):1996. https://doi.org/10.3390/w17131996
Chicago/Turabian StyleWang, Hongrun, Jinxuan Ai, and Jiali Jiang. 2025. "Pollution Characteristics and Risk Assessment of Microplastics and Plasticizers Around a Typical Chemical Industrial Park" Water 17, no. 13: 1996. https://doi.org/10.3390/w17131996
APA StyleWang, H., Ai, J., & Jiang, J. (2025). Pollution Characteristics and Risk Assessment of Microplastics and Plasticizers Around a Typical Chemical Industrial Park. Water, 17(13), 1996. https://doi.org/10.3390/w17131996