Efficient Removal of Toxic Heavy Metals on Kaolinite-Based Clay: Adsorption Characteristics, Mechanism and Applicability Perspectives
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adsorbent Characterization
2.3. Adsorption/Desorption Experiments
2.4. Modeling of Adsorption Data
2.5. Applicability Tests
3. Results and Discussion
3.1. Structural Features of Ka-Clay
3.2. Establishing Optimal Adsorption Conditions
3.3. Effect of Contact Time and Kinetic Modeling
3.4. Effect of Initial Metal Ions Concentration and Temperature
3.5. Isotherm and Thermodynamic Modeling
3.6. Desorption Study
3.7. Real Water Sample Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Duraes, L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Martin, S.; Griswold, W. Human health effects of heavy metals. Environ. Sci. Technol. Briefs Citiz. 2009, 15, 1–6. [Google Scholar]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Saleh, T.A.; Mustaqeem, M.; Khaled, M. Water treatment technologies in removing heavy metal ions from wastewater: A review. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100617. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.J.; Sillanpaa, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Proc. Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett. 2019, 17, 729–754. [Google Scholar] [CrossRef]
- Benalia, M.C.; Youcef, L.; Bouaziz, M.G.; Achour, S.; Menasra, H. Removal of Heavy Metals from Industrial Wastewater by Chemical Precipitation: Mechanisms and Sludge Characterization. Arabian J. Sci. Eng. 2022, 47, 5587–5599. [Google Scholar] [CrossRef]
- Fei, Y.; Hu, Y.H. Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere 2023, 335, 139077. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Madhav, S.; Mishra, R.; Kumari, A.; Srivastav, A.L.; Ahamad, A.; Singh, P.; Ahmed, S.; Mishra, P.K.; Sillanpää, M. A review on sources identifcation of heavy metals in soil and remediation measures by phytoremediation-induced methods. Int. J. Environ. Sci. Technol. 2024, 21, 1099–1120. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T. Phytoremediation of contaminated water using aquatic plants, its mechanism and enhancement. Curr. Opin. Environ. Sci. Health 2023, 32, 100451. [Google Scholar] [CrossRef]
- Ryskie, S.; Neculita, C.M.; Rosa, E.; Coudert, L.; Couture, P. Active Treatment of Contaminants of Emerging Concern in Cold Mine Water Using Advanced Oxidation and Membrane-Related Processes: A Review. Minerals 2021, 11, 259. [Google Scholar] [CrossRef]
- Foudhaili, T.; Jaidi, R.; Neculita, C.M.; Rosa, E.; Triffault-Bouchet, G.; Veilleux, E.; Coudert, L.; Lefebvre, O. Effect of the electrocoagulation process on the toxicity of gold mine effluents: A comparative assessment of Daphnia magna and Daphnia pulex. Sci. Total Environ. 2020, 708, 134739. [Google Scholar] [CrossRef] [PubMed]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. 2019, 17, 195–213. [Google Scholar] [CrossRef]
- Yang, X.; Wan, Y.; Zheng, Y.; He, F.; Yu, Z.; Huang, J.; Wang, H.; Ok, S.; Jiang, Y.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Vasic, V.; Kukic, D.; Sciban, M.; Durisic-Mladenovic, N.; Velic, N.; Pajin, B.; Crespo, J.; Farre, M.; Seres, Z. Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review. Water 2023, 15, 1853. [Google Scholar] [CrossRef]
- Kamali, M.; Esmaeili, H.; Tamjidi, S. Synthesis of Zeolite Clay/Fe-Al Hydrotalcite Composite as a Reusable Adsorbent for Adsorption/Desorption of Cationic Dyes. Arabian J. Sci. Eng. 2022, 47, 6651–6665. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Tang, J.; Yang, Z.; Zhang, L.; Huang, X. New insights into the interactions between Pb(II) and fruit waste biosorbent. Chemosphere 2022, 303, 135048. [Google Scholar] [CrossRef]
- Es-sahbany, H.; Hsissou, R.; El Hachimi, M.L.; Allaoui, M.; Nkhili, S.; Elyoubi, M.S. Investigation of the adsorption of heavy metals (Cu, Co, Ni and Pb) in treatment synthetic wastewater using natural clay as a potential adsorbent (Sale-Morocco). Mat. Todays Proc. 2021, 45, 7290–7298. [Google Scholar] [CrossRef]
- Xie, S.; Huang, L.; Su, C.; Yan, J.; Chen, Z.; Li, M.; Du, M.; Zhang, H. Application of clay minerals as adsorbents for removing heavy metals from the environment. Green Smart Min. Eng. 2024, 1, 249–261. [Google Scholar] [CrossRef]
- Hacıosmanoğlu, G.G.; Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. J. Environ. Manag. 2022, 317, 115397. [Google Scholar] [CrossRef] [PubMed]
- Sethy, S.K.; Kishore, M.V.; Bhagat, C.; Kumar, M. Periodic monitoring of nano clay as the potential adsorbent to remove metal and dyes from wastewater: A review. Total Environ. Res. Themes 2023, 7, 100067. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, X.; Feng, C.P.; Yang, S.P. Nano-clay montmorillonite removes tetracycline in water: Factors and adsorption mechanism in aquatic environments. iScience 2024, 27, 108952. [Google Scholar] [CrossRef]
- Mnasri-Ghnimi, S.; Frini-Srasra, N. Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay 2019, 179, 105151. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, X.H.; Wang, Y.A.; Shi, E.Z.; Lin, H.; Chen, G.N. Removal of Pb2+ and Cd2+ from irrigation water and replenishment of mineral nutrients using a lowcost mineral adsorbent derived from potassium-rich aluminum silicates. J. Environ. Chem. Eng. 2023, 11, 109282. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Zhao, Y.; Bai, H.; Wen, T.; Kang, S.; Song, G.; Song, S.; Komarneni, S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chem. Eng. J. 2021, 420, 127574. [Google Scholar] [CrossRef]
- Awwad, A.M.; Salem, N.M.; Amer, M.W.; Shammout, M.W. Adsorptive removal of Pb(II) and Cd(II) ions from aqueous solution onto modified Hiswa iron-kaolin clay: Equilibrium and thermodynamic aspects. Chem. Int. 2021, 7, 139. [Google Scholar]
- Azanfire, B.; Bulgariu, D.; Bulgariu, L. Efficient Removal of Toxic Metal Ions (Pb(II) and Hg(II) Ions in Single Component Systems by Adsorption on Romanian Clay Material. Rev. Chim. 2020, 71, 37–47. [Google Scholar] [CrossRef]
- Azanfire, B.; Bulgariu, L. Optimization of process parameters for retention of Cd(II) ions adsorption from aqueous solutions on clay materials. Bull. Polytech. Inst. Jassy 2022, 68, 21–30. [Google Scholar]
- Rangabhashiyam, S.; Anu, N.; Nandagopal Giri, M.S.; Selvaraju, N. Relevance of isotherm models in biosorption of pollutants by agricultural by-products. J. Environ. Chem. Eng. 2014, 2, 398–414. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second-order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Rethinking of the intraparticle diffusion adsorption kinetics model: Interpretation, solving methods and applications. Chemosphere 2022, 309, 136732. [Google Scholar] [CrossRef]
- Lima, E.C.; Gomes, A.A.; Tran, H.N. Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (ΔS and ΔH). J. Molec. Liq. 2020, 311, 113315. [Google Scholar] [CrossRef]
- Fresenius, W.; Quentin, K.E.; Schneider, W. Water Analysis. A Practical Guide to Physico-Chemical, Chemical and Microbiological Water Examination and Quality Assurance; Springer: Berlin, Germany, 1988. [Google Scholar]
- Favilli, L.; Giacomino, A.; Malandrino, M.; Inaudi, P.; Diana, A.; Abollino, O. Strategies for mercury speciation with single and multi-element approaches by HPLC-ICP-MS. Front. Chem. 2022, 10, 1082956. [Google Scholar] [CrossRef]
- Mustapha, L.S.; Yusuff, A.S.; Dim, P.E. RSM optimization studies for cadmium ions adsorption onto pristine and acid-modified kaolinite clay. Heliyon 2023, 9, e18634. [Google Scholar] [CrossRef]
- Solic, M.; Maletić, M.; Isakovski, M.K.; Nikić, J.; Watson, M.; Kónya, Z.; Rončević, S. Removing low levels of Cd(II) and Pb(II) by adsorption on two types of oxidized multiwalled carbon nanotubes. J. Environ. Chem. Eng. 2021, 9, 105402. [Google Scholar] [CrossRef]
- Hussain, S.T.; Ali, S.A.K. Removal of Heavy Metal by Ion Exchange Using Bentonite Clay. J. Ecol. Eng. 2021, 22, 104–111. [Google Scholar] [CrossRef]
- Abbou, B.; Lebkiri, I.; Ouaddari, H.; Kadiru, L.; Ouass, A.; Habsaoui, A.; Lebkiri, A.; Rifi, E.H. Removal of Cd(II), Cu(II), and Pb(II) by adsorption onto natural clay: A kinetic and thermodynamic study. Turk. J. Chem. 2021, 45, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Bera, G.; Mitra, K.; Wade, T.L.; Knap, A.H.; Phillips, T.D. Tight sorption of arsenic, cadmium, mercury, and lead by edible activated carbon and acid-processed montmorillonite clay. Environ. Sci. Poll. Res. 2021, 28, 6758–6770. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lai, D.; Wang, Y. Performance of Pb(II) removal by an activated carbon supported nanoscale zero-valent iron composite at ultralow iron content. J. Hazard. Mater. 2019, 361, 37–48. [Google Scholar] [CrossRef]
- Liu, Y.; Shen, X.; Xian, Q.; Chen, H.; Zou, H.; Gao, S. Adsorption of copper and lead in aqueous solution onto bentonite modified by 4’-methylbenzo-15-crown-5. J. Hazard. Mater. 2006, 137, 1149–1155. [Google Scholar] [CrossRef]
- Carvalho, W.A.; Vignado, C.; Fontana, J.; Riboldi, M.B. The removal of heavy metal ions from aqueous effluents by modified clays: Retention of Cd(II) and Ni(II) ions. Ads. Sci. Technol. 2007, 25, 673–692. [Google Scholar] [CrossRef]
- Tran, L.; Wu, P.; Zhu, Y.; Liu, S.; Zhu, N. Comparative study of Hg(II) adsorption by thiol- and hydroxyl-containing bifunctional montmorillonite and vermiculite. Appl. Surf. Sci. 2015, 356, 91–101. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Hu, J.; Zheng, Q.; Zhao, Y.; Lv, G.; Liao, L. Clay minerals and clay-based materials for heavy metals pollution control. Sci.Total Environ. 2024, 954, 176193. [Google Scholar]
- Menezes, J.M.C.; da Silva Bento, A.M.; de Paula Filho, F.J.; da Costa, J.G.M.; Melo Coutinho, H.D.; Pereira Teixeira, R.N. Kinetic and thermodynamic study of copper (II) Ions biosorption by Caryocar Coriaceum Wittm bark. Sust. Chem. Pharm. 2021, 19, 100364. [Google Scholar]
- Dean, J.A. Handbook of Analytical Chemistry; Mc-Grow Hill Inc.: New York, NY, USA, 1995. [Google Scholar]
- Kadiri, L.; Lebkiri, A.; Rifi, E.H.; Ouass, A.; Essaadaoui, Y.; Lebkiri, I. Mathematical modeling and thermodynamic study of copper (II) removal from aqueous solution by Coriandrum Sativum seeds. Mediterr. J. Chem. 2019, 7, 478–490. [Google Scholar] [CrossRef]
- Xu, C.; Feng, Y.; Li, H.; Wu, R.; Ju, J.; Liu, S.; Yang, Y.; Wang, B. Adsorption of heavy metal ions by iron tailings: Behavior, mechanism, evaluation and new perspectives. J. Clean. Prod. 2022, 344, 131065. [Google Scholar] [CrossRef]
- NTPA 002, Governmental Decision no. 352 of April 21, 2005 on Amending and Supplementing Governmental Decision no. 188/2002 for the Approval of Some Norms Regarding the Conditions for Discharging Wastewater into the Aquatic Environment, Romanian Official Monitor, no. 398 of May 11, 2005. Available online: https://lege5.ro/Gratuit/gqydqnzx/tabelul-nr-1-normativ?dp=gizdcmzyguyts (accessed on 20 June 2025).
Major Components | |||||||
---|---|---|---|---|---|---|---|
Component | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O |
(w/w), % | 60.37 | 14.65 | 3.82 | 8.19 | 1.13 | 2.58 | 1.96 |
Minor Components | |||||||
Component | Cu | Ni | Zn | Mn | Cr | Ti | Ba |
mg/kg | 62.44 | 17.08 | 103.71 | 379.37 | 30.55 | 94.73 | 39.17 |
Model | Equation | Notations | |
---|---|---|---|
Kinetic models | PFO model | qt, qe—adsorption capacities at time t and at equilibrium, k1—rate constant of PFO model, k2—rate constant of PSO model, kdiff—rate constant of IPD model, c—equilibrium concentration of metal ions. | |
PSO model | |||
IPD model | |||
Isotherm models | Langmuir model | q—adsorption capacity, qmax—maximum adsorption capacity, KL—Langmuir constant, c—concentration of metal ions at equilibrium, n—heterogeneity factor, KF—Freundlich constant, KT—Temkin constant, BT—constant correlated with the adsorption energy. | |
Freundlich model | |||
Temkin model | |||
Thermodynamic modeling (van’t Hoff equations) | ΔG—variation of free Gibbs energy, ΔH—variation of enthalpy, ΔS—variation of entropy, R—universal gas constant (8.314 J/K mol), T—absolute temperature. | ||
Model | Parameters | Pb(II) | Cd(II) | Hg(II) |
---|---|---|---|---|
PFO | R2 | 0.9799 | 0.9613 | 0.9011 |
qeexp, mg/g | 23.59 | 16.41 | 12.73 | |
qecalc, mg/g | 7.62 | 5.15 | 1.85 | |
k1, 1/min | 0.0051 | 0.0214 | 0.0035 | |
PSO | R2 | 0.9949 | 0.9995 | 0.9981 |
qeexp, mg/g | 23.59 | 16.41 | 12.73 | |
qecalc, mg/g | 23.86 | 16.50 | 12.67 | |
k2, g/mg mim | 0.0057 | 0.0243 | 0.0282 | |
IPD | R2 | 0.9547 | 0.9942 | 0.9165 |
c1, mg/L | 13.53 | 11.74 | 9.63 | |
kdiff1, mg/g min1/2 | 0.6167 | 0.5602 | 0.3497 | |
R2 | 0.9998 | 0.9051 | 0.9697 | |
c2, mg/L | 14.72 | 15.78 | 10.58 | |
kdiff2, mg/g min1/2 | 0.7509 | 0.5325 | 0.1477 |
Model | Parameters | Pb(II) | Cd(II) | Hg(II) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
10 °C | 20 °C | 50 °C | 10 °C | 20 °C | 50 °C | 10 °C | 20 °C | 50 °C | ||
Langmuir | R2 | 0.9756 | 0.9838 | 0.9742 | 0.9853 | 0.9863 | 0.9761 | 0.9522 | 0.9761 | 0.9763 |
qmax, mg/g | 48.08 | 69.93 | 116.08 | 22.67 | 72.41 | 107.41 | 25.64 | 31.03 | 45.66 | |
KL, L/g | 0.036 | 0.158 | 0.661 | 0.603 | 1.313 | 2.140 | 0.004 | 0.005 | 0.008 | |
Freundlich | R2 | 0.9237 | 0.9195 | 0.9024 | 0.8399 | 0.8688 | 0.9044 | 0.8390 | 0.8854 | 0.8906 |
1/n | 0.15 | 0.23 | 0.23 | 0.16 | 0.23 | 0.57 | 0.65 | 0.71 | 0.78 | |
KF, L/g | 18.02 | 22.11 | 22.17 | 4.52 | 5.69 | 6.07 | 0.33 | 0.38 | 0.78 | |
Temkin | R2 | 0.9316 | 0.9492 | 0.9061 | 0.8824 | 0.9452 | 0.9044 | 0.8851 | 0.8470 | 0.8247 |
KT, L/g | 26.86 | 17.36 | 11.09 | 2.33 | 1.93 | 1.19 | 0.03 | 0.03 | 0.04 | |
B, kJ/mol | 4.81 | 9.71 | 12.77 | 6.21 | 11.91 | 21.27 | 3.71 | 9.33 | 10.49 |
Adsorbent | Metal Ion | pH | Adsorbent Dose, g/L | Adsorption Capacity, mg/g | Reference |
---|---|---|---|---|---|
Bentonite clay | Pb(II) | 5.0 | 2.0 | 0.60 | [42] |
Natural illitic clay | Cd(II) | 5.0 | 1.0 | 5.25 | [43] |
Pb(II) | 5.0 | 1.0 | 15.20 | ||
Activated carbon | Cd(II) | 2.0 | 1.0 | 0.63 | [44] |
Hg(II) | 2.0 | 1.0 | 7.97 | ||
Acid processed montmorillonite clay | Pb(II) | 2.0 | 1.0 | 5.98 | |
Nanoscale zero-valent iron composite | Pb(II) | 6.0 | 1.0 | 59.35 | [45] |
Bentonite-crown-5 composite | Pb(II) | 5.0 | - | 101.11 | [46] |
Montmorillonite-DDTC composite | Cd(II) | 6.1–6.9 | 2.0 | 21.53 | [47] |
Montmorillonite-dimercapro composite | Hg(II) | 4.0–5.0 | 0.2 | 3.21 | [48] |
MoS2/clay mineral composites | Pb(II) | 5.0 | 1.5 | 89.45 | [49] |
Cd(II) | 5.5 | 1.6 | 280.39 | ||
Hg(II) | 3.0 | - | 1836.00 | ||
Ka-Clay | Pb(II) | 6.5 | 4.0 | 69.93 | This study |
Cd(II) | 6.5 | 4.0 | 72.41 | ||
Hg(II) | 2.0 | 4.0 | 31.03 |
Metal Ion | Temperature, °C | ΔG, kJ/mol | ΔH, kJ/mol | ΔS, J/mol·K |
---|---|---|---|---|
Pb(II) | 10 | −15.67 | 21.81 | 77.71 |
20 | −13.23 | 85.04 | ||
50 | −7.19 | 85.42 | ||
Cd(II) | 10 | −12.73 | 7.09 | 17.74 |
20 | −11.79 | 26.46 | ||
50 | −8.66 | 31.38 | ||
Hg(II) | 10 | −14.83 | 13.01 | 86.09 |
20 | −12.92 | 86.17 | ||
50 | −11.37 | 88.44 |
Indicator | Pb(II) | Cd(II) | Hg(II) | Permissible Limit [54] | |||
---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | ||
cM(II), mg/L | 20.68 | 0.23 | 21.72 | 0.14 | 20.02 | 1.71 | <(0.01–0.5) |
pH | 6.50 | 7.54 | 6.50 | 7.47 | 2.00 | 7.54 | 6.5–8.5 |
TSS, mg/L | 219.15 | 278.45 | 219.15 | 285.01 | 219.15 | 279.23 | - |
Turbidity, NTU | 10.70 | 14.20 | 10.70 | 15.10 | 10.70 | 13.90 | - |
Hardness, °Ge | 14.58 | 15.98 | 14.58 | 16.13 | 14.58 | 15.79 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azanfire, B.-E.; Bulgariu, D.; Cimpoeşu, N.; Bulgariu, L. Efficient Removal of Toxic Heavy Metals on Kaolinite-Based Clay: Adsorption Characteristics, Mechanism and Applicability Perspectives. Water 2025, 17, 1938. https://doi.org/10.3390/w17131938
Azanfire B-E, Bulgariu D, Cimpoeşu N, Bulgariu L. Efficient Removal of Toxic Heavy Metals on Kaolinite-Based Clay: Adsorption Characteristics, Mechanism and Applicability Perspectives. Water. 2025; 17(13):1938. https://doi.org/10.3390/w17131938
Chicago/Turabian StyleAzanfire, Bianca-Elena, Dumitru Bulgariu, Nicanor Cimpoeşu, and Laura Bulgariu. 2025. "Efficient Removal of Toxic Heavy Metals on Kaolinite-Based Clay: Adsorption Characteristics, Mechanism and Applicability Perspectives" Water 17, no. 13: 1938. https://doi.org/10.3390/w17131938
APA StyleAzanfire, B.-E., Bulgariu, D., Cimpoeşu, N., & Bulgariu, L. (2025). Efficient Removal of Toxic Heavy Metals on Kaolinite-Based Clay: Adsorption Characteristics, Mechanism and Applicability Perspectives. Water, 17(13), 1938. https://doi.org/10.3390/w17131938