Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.2.1. Synoptic Campaigns 2018 and 2019
2.2.2. Tracer Injection Campaign
2.2.3. Confluence Sampling Campaign 2020
2.3. Modeling Approach
2.3.1. WASP Model
2.3.2. Modeling Framework
2.3.3. Conceptual Model
2.3.4. Segmentation of the Study Area
2.3.5. Parameters and Constants
2.3.6. Calibration and Validation
2.4. Model Performance Assessment
2.5. Sensitivity Analysis Description
- (i)
- Complexity 1: conservative transport (no sorption), total and dissolved fractions are transported conservatively without sorption reactions between phases, suspended solids, or sediments;
- (ii)
- Complexity 2: equilibrium sorption, a process represented by the partition coefficient (Kd), which relates the concentration of the metal(loid) phases and the suspended solids, but no interaction with sediments is considered;
- (iii)
- Complexity 3: sorption equilibrium with sediment interaction.
3. Results and Discussion
3.1. Hydrogeochemical Characterization
3.2. Modeling with WASP8
3.2.1. Modeling of Flows, Velocities, and SO42− Concentration
3.2.2. Modeling of Metal(loid) Concentrations
3.2.3. Validation Processes and Performance Indicators
3.2.4. Sensitivity Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A | Cross-sectional area |
ARD | Acid rock drainage |
C | Metal(loid) concentration |
Cd | Dissolved concentration |
Cl-1(T) | Claro River (tributary) |
Cp | Particulate concentration |
D | Depth of the cross-sectional area of the stream |
d | Index of agreement |
DL | Longitudinal dispersion coefficient |
El-1(C) | Elqui River at Albarrobal location (control location) |
El-2(C) | Elqui River at Diaguitas location (control location) |
El-3(C) | Elqui River at Gualliguaica location (control location) |
ENSO | Niño—southern oscillation |
HW | Headwater location |
In-1(T) | Incaguaz River location (tributary) |
Kd | Partition coefficient |
L | Model segment length |
Ll-1(HW) | La Laguna River location (headwater) |
(T) | Tributary location |
(C) | Control location for model performance evaluation |
OTIS | One-dimensional transport with inflow and storage |
Ox | Disturbed output value for sensitivity index |
Pbase | Base parameter value for sensitivity index |
PDO | Pacific decadal oscillation |
PHREEQC | pH redox equilibrium model |
Px | Disturbed parameter value for sensitivity index |
Q | Flow rate |
R2 | Coefficient of determination |
RRMSE | Relative root mean square error |
s | Sensitivity index |
Model sensitivity for complexity function | |
SK | Total kinetic transformation rate |
SL | Direct or diffuse loading rate |
SR | Stream routine |
To-1(T) | Toro River location (tributary) |
TSS | Total suspended solids |
Tu-1(C) | Turbio River after the confluence with the La Laguna River location (control location) |
Tu-2(C) | Turbio River before the confluence with the Incaguaz River location (control location) |
Tu-3(C) | Turbio River at Balala location (control location) |
Tu-4(C) | Turbio River at Huanta location (control location) |
Tu-5(C) | Turbio River at Varillar location (control location) |
U | Flow rate velocity |
Um | Utility function |
UWER | Upper Watershed of the Elqui River |
Ux | Longitudinal advective velocity |
V | Segment volume |
Vr | Resuspension velocity |
Vs | Sedimentation velocity |
W | Width |
WASP | Water quality analysis simulation program |
WASP8 | Water quality analysis simulation program version 8 |
Weighting factor for utility function | |
Error factor for utility function | |
x | Factor of disturbance for sensitivity index |
Average of the measured values | |
xmod | Modeled value normalized to the average for sensitivity index |
xobs | Measurement value normalized to the average for sensitivity index |
ε | Error for sensitivity index |
Error model for utility function | |
σ | Normalized error variance for sensitivity index |
References
- Shrestha, S.; Gunawardana, S.K.; Piman, T.; Babel, M.S. Assessment of the Impact of Climate Change and Mining Activities on Streamflow and Selected Metal’s Loading in the Chindwin River, Myanmar. Environ. Res. 2020, 181, 108942. [Google Scholar] [CrossRef] [PubMed]
- Zegers, G.; Navarro-Valdivia, L.; Lagos-Zuñiga, M.; Navarrete-Calvo, A.; Caraballo, M.A.; Niño, Y.; McPhee, J.; Montserrat, S. An Integrated Modeling Approach for Mineral and Metal Transport in Acidic Rivers at High Mountainous Porphyry Cu Systems. 1 November 2021. Available online: https://www.sciencedirect.com/science/article/pii/S002216942100768X (accessed on 7 December 2024).
- Zeng, J.; Han, G.; Wu, Q.; Tang, Y. Heavy Metals in Suspended Particulate Matter of the Zhujiang River, Southwest China: Contents, Sources, and Health Risks. Int. J. Environ. Res. Public Health 2019, 16, 1843. [Google Scholar] [CrossRef]
- US EPA. Analysis of the Transport and Fate of Metals Released from the Gold King Mine in the Animas and San Juan Rivers. Fate & Transport Analysis. Available online: https://www.epa.gov/goldkingmine/fate-transport-analysis (accessed on 2 January 2025).
- Oyarzún, J.; Oyarzun, R.; Lillo, J.; Higueras, P.; Maturana, H.; Oyarzún, R. Distribution of Chemical Elements in Calc-Alkaline Igneous Rocks, Soils, Sediments and Tailings Deposits in Northern Central Chile. J. S. Am. Earth Sci. 2016, 69, 25–42. [Google Scholar] [CrossRef]
- Jones, M.M.; Runkel, R.L.; McKnight, D.M. To Remediate or Not? Source Identification in an Acid Mine Drainage Stream, Warden Gulch, Colorado. Mine Water Environ. 2023, 42, 383–398. [Google Scholar] [CrossRef]
- Velleux, M.L.; Julien, P.Y.; Rojas-Sanchez, R.; Clements, W.H.; England, J.F. Simulation of Metals Transport and Toxicity at a Mine-Impacted Watershed: California Gulch, Colorado. Environ. Sci. Technol. 2006, 40, 6996–7004. [Google Scholar] [CrossRef]
- Chueh, Y.-Y.; Fan, C.; Huang, Y.-Z. Copper Concentration Simulation in a River by SWAT-WASP Integration and Its Application to Assessing the Impacts of Climate Change and Various Remediation Strategies. J. Environ. Manag. 2021, 279, 111613. [Google Scholar] [CrossRef] [PubMed]
- Byrne, P.; Runkel, R.L.; Frau, I.; Lynch, S.; Edwards, P. Critical Shifts in Trace Metal Transport and Remediation Performance under Future Low River Flows. Environ. Sci. Technol. 2020, 54, 15742–15750. [Google Scholar] [CrossRef]
- Zarroca, M.; Roqué, C.; Linares, R.; Salminci, J.G.; Gutiérrez, F. Natural Acid Rock Drainage in Alpine Catchments: A Side Effect of Climate Warming. Sci. Total Environ. 2021, 778, 146070. [Google Scholar] [CrossRef]
- Crouch, C.M.; McKnight, D.M.; Todd, A.S. Quantifying Sources of Increasing Zinc from Acid Rock Drainage in an Alpine Catchment under a Changing Hydrologic Regime. Hydrol. Process. 2013, 27, 721–733. [Google Scholar] [CrossRef]
- Manning, A.H.; Verplanck, P.L.; Caine, J.S.; Todd, A.S. Links between Climate Change, Water-Table Depth, and Water Chemistry in a Mineralized Mountain Watershed. Appl. Geochem. 2013, 37, 64–78. [Google Scholar] [CrossRef]
- Manning, A.H.; Petach, T.N.; Runkel, R.L.; McKnight, D.M. Climate-Driven Increases in Stream Metal Concentrations in Mineralized Watersheds Throughout the Colorado Rocky Mountains, USA. Water Resour. Res. 2024, 60, e2023WR036062. [Google Scholar] [CrossRef]
- Salerno, F.; Rogora, M.; Balestrini, R.; Lami, A.; Tartari, G.A.; Thakuri, S.; Godone, D.; Freppaz, M.; Tartari, G. Glacier Melting Increases the Solute Concentrations of Himalayan Glacial Lakes. Environ. Sci. Technol. 2016, 50, 9150–9160. [Google Scholar] [CrossRef] [PubMed]
- Thies, H.; Nickus, U.; Mair, V.; Tessadri, R.; Tait, D.; Thaler, B.; Psenner, R. Unexpected Response of High Alpine Lake Waters to Climate Warming. Environ. Sci. Technol. 2007, 41, 7424–7429. [Google Scholar] [CrossRef]
- Ilyashuk, B.P.; Ilyashuk, E.A.; Psenner, R.; Tessadri, R.; Koinig, K.A. Rock Glacier Outflows May Adversely Affect Lakes: Lessons from the Past and Present of Two Neighboring Water Bodies in a Crystalline-Rock Watershed. Environ. Sci. Technol. 2014, 48, 6192–6200. [Google Scholar] [CrossRef] [PubMed]
- Brighenti, S.; Bearzot, F.; Delpero, M.; Tirler, W.; Tolotti, M.; Vorhauser, S.; Bachmann, C.; Romanin, E.; Sparber, K.; Vidoni, B.; et al. Increasing Nickel Concentrations in a Large River Network of South Tyrol, Eastern European Alps. ACS EST Water 2025, 5, 594–604. [Google Scholar] [CrossRef]
- Wanner, C.; Moradi, H.; Ingold, P.; Cardenas Bocanegra, M.A.; Mercurio, R.; Furrer, G. Rock Glaciers in the Central Eastern Alps—How Permafrost Degradation Can Cause Acid Rock Drainage, Mobilization of Toxic Elements and Formation of Basaluminite. Glob. Planet. Chang. 2023, 227, 104180. [Google Scholar] [CrossRef]
- Kwong, Y.T.J.; Whitley, G.; Roach, P. Natural Acid Rock Drainage Associated with Black Shale in the Yukon Territory, Canada. Appl. Geochem. 2009, 24, 221–231. [Google Scholar] [CrossRef]
- (Feige) Gault, K.B.; Gammon, P.; Fortin, D. A Geochemical Characterization of Cold-Water Natural Acid Rock Drainage at the Zn–Pb XY Deposit, Yukon, Canada. Appl. Geochem. 2015, 62, 35–47. [Google Scholar] [CrossRef]
- Runkel, R.L.; Kimball, B.A.; Walton-Day, K.; Verplanck, P.L.; Broshears, R.E. Evaluating Remedial Alternatives for an Acid Mine Drainage Stream: A Model Post Audit. Environ. Sci. Technol. 2012, 46, 340–347. [Google Scholar] [CrossRef]
- Nordstrom, D.K.; Blowes, D.W.; Ptacek, C.J. Hydrogeochemistry and Microbiology of Mine Drainage: An Update. Appl. Geochem. 2015, 57, 3–16. [Google Scholar] [CrossRef]
- Runkel, R.L.; Kimball, B.A. Evaluating Remedial Alternatives for an Acid Mine Drainage Stream: Application of a Reactive Transport Model. Environ. Sci. Technol. 2002, 36, 1093–1101. [Google Scholar] [CrossRef]
- Fernandez, N.; Camacho, L.A. Water Quality Modeling in Headwater Catchments: Comprehensive Data Assessment, Model Development and Simulation of Scenarios. Water 2023, 15, 868. [Google Scholar] [CrossRef]
- Duc, T.A.; Loi, V.D.; Thao, T.T. Partition of Heavy Metals in a Tropical River System Impacted by Municipal Waste. Environ. Monit. Assess 2013, 185, 1907–1925. [Google Scholar] [CrossRef] [PubMed]
- Allison, J.D.; Allison, T.L. Partition Coefficients for Metals in Surface Water, Soil, and Waste. ResearchGate. Available online: https://www.researchgate.net/publication/237633308_Partition_coefficients_for_metals_in_surface_water_soil_and_waste (accessed on 4 December 2024).
- Caruso, B.; Cox, T. Modeling Effects of Natural Flow Restoration on Metals Fate and Transport in a Mountain Stream Impacted by Mine Waste1|Request PDF. J. Am. Water Resour. Assoc. 2008, 44, 535–551. [Google Scholar] [CrossRef]
- Garneau, C.; Sauvage, S.; Probst, A.; Sánchez-Pérez, J.M. Modelling of Trace Metal Transfer in a Large River under Different Hydrological Conditions (the Garonne River in Southwest France). Ecol. Model. 2015, 306, 195–204. [Google Scholar] [CrossRef]
- Feng, C.; Guo, X.; Yin, S.; Tian, C.; Li, Y.; Shen, Z. Heavy Metal Partitioning of Suspended Particulate Matter–Water and Sediment–Water in the Yangtze Estuary. Chemosphere 2017, 185, 717–725. [Google Scholar] [CrossRef]
- DICTUC. Implementación Cuantitativa del Modelo PHREEQC en Cuenca del Río Elqui; División Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica: Santiago, Chile, 2011. [Google Scholar]
- Cubillos, J. Transporte de contaminantes en sistemas fluviales y evaluación de la aplicabilidad del modelo WASP en las cuencas de los ríos Elqui y Choapa, Región de Coquimbo, Chile. In Memoria Para Optar al Título de Ingeniero Civil Ambiental; Universidad de La Serena: La Serena, Chile, 2013; Available online: https://es.scribd.com/document/391689971/Transporte-de-contaminantes-fluviales-pdf (accessed on 5 December 2024).
- Rossi, C.; Oyarzún, J.; Pastén, P.; Runkel, R.L.; Núñez, J.; Duhalde, D.; Maturana, H.; Rojas, E.; Arumí, J.L.; Castillo, D.; et al. Assessment of a Conservative Mixing Model for the Evaluation of Constituent Behavior below River Confluences, Elqui River Basin, Chile. River Res. Appl. 2021, 37, 967–978. [Google Scholar] [CrossRef]
- Nauditt, A.; Soulsby, C.; Birkel, C.; Rusman, A.; Schüth, C.; Ribbe, L.; Álvarez, P.; Kretschmer, N. Using Synoptic Tracer Surveys to Assess Runoff Sources in an Andean Headwater Catchment in Central Chile. Environ. Monit. Assess 2017, 189, 440. [Google Scholar] [CrossRef]
- Cepeda, J.; Squeo, F.; Cortés, A.; Oyarzún, J.; Zavala, H. El Humedal Tambo-Puquíos en la Alta Montaña de Elqui I (Región de Coquimbo, Chile): Vulnerabilidad y Cambio del Clima. 2008. Available online: https://biblioteca.cehum.org/bitstream/CEHUM2018/1496/1/Cepeda%2C%20Squeo%2C%20Cortes%2C%20Oyarzun%2C%20Zavala.%20El%20Humedal%20Tambo-Puqu%C3%ADos%20en%20la%20alta%20monta%C3%B1a%20de%20Elqui.pdf (accessed on 1 March 2023).
- Souvignet, M.; Gaese, H.; Ribbe, L.; Kretschmer, N.; Oyarzún, R. Statistical Downscaling of Precipitation and Temperature in North-central Chile: An Assessment of Possible Climate Change Impacts in an Arid Andean Watershed. Hydrol. Sci. J. 2010, 55, 41–57. [Google Scholar] [CrossRef]
- Núñez, J.; Rivera, D.; Oyarzún, R.; Arumí, J.L. Influence of Pacific Ocean Multidecadal Variability on the Distributional Properties of Hydrological Variables in North-Central Chile. J. Hydrol. 2013, 501, 227–240. [Google Scholar] [CrossRef]
- Favier, V.; Falvey, M.; Rabatel, A.; Praderio, E.; López, D. Interpreting Discrepancies between Discharge and Precipitation in High-Altitude Area of Chile’s Norte Chico Region (26–32°S). Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Zavala, H.; Trigos, H. Hidrología de la Cuenca del río Elqui, los Sistemas Naturales de la Cuenca del río Elqui (Región de Coquimbo, Chile): Vulnerabilidad y Cambio del Clima. 2008. Available online: https://www.parc.ca/mcri/pdfs/books/cepeda/3.pdf (accessed on 1 July 2023).
- Garreaud, R.D.; Alvarez-Garreton, C.; Barichivich, J.; Boisier, J.P.; Christie, D.; Galleguillos, M.; LeQuesne, C.; McPhee, J.; Zambrano-Bigiarini, M. The 2010–2015 Megadrought in Central Chile: Impacts on Regional Hydroclimate and Vegetation. Hydrol. Earth Syst. Sci. 2017, 21, 6307–6327. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepulveda, H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A Climate Dynamics Perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Núñez, J.; Vergara, A.; Leyton, C.; Metzkes, C.; Mancilla, G.; Bettancourt, D. Reconciling Drought Vulnerability Assessment Using a Convergent Approach: Application to Water Security in the Elqui River Basin, North-Central Chile. Water 2017, 9, 589. [Google Scholar] [CrossRef]
- Deformes, J.M.; Núñez, J.; Fairley, J.P.; Arumí, J.L.; Oyarzún, R. Assessing Groundwater Potential in a Mid-Mountain Dryland Area of North-Central Chile through Geospatial Mapping. Water 2023, 15, 3005. [Google Scholar] [CrossRef]
- Álamos, N.; Alvarez-Garreton, C.; Muñoz, A.; González-Reyes, Á. The Influence of Human Activities on Streamflow Reductions during the Megadrought in Central Chile. Hydrol. Earth Syst. Sci. 2024, 28, 2483–2503. [Google Scholar] [CrossRef]
- Centro de Estudios Avanzados en Zonas Áridas. Boletín Climático CEAZA, Región de Coquimbo, Diciembre 2024. Available online: https://boletin.ceazamet.cl/images/boletin/boletin.ceazamet.2023.10.pdf (accessed on 2 January 2025).
- Ministerio de Obras Públicas—Dirección de General de Aguas. Decretos Declaración Zona de Escasez Vigentes. Available online: https://dga.mop.gob.cl/derechos-de-agua/proteccion-de-las-fuentes/decretos-de-escasez-2/ (accessed on 12 January 2025).
- Oyarzún, J.; Maturana, H.; Paulo, A.; Lillo, J.; Pastén, P.; Núñez, J.; Duhalde, D.; González, C.; Portilla, A.; Oyarzún, R. Environmental Aspects of a Major ARD Source at El Indio Au-Cu-As District, North-Central Chile. Mine Water Environ. 2021, 41, 210–224. [Google Scholar] [CrossRef]
- Oyarzun, R.; Guevara, S.; Oyarzún, J.; Lillo, J.; Maturana, H.; Higueras, P. The As-Contaminated Elqui River Basin: A Long Lasting Perspective (1975–1995) Covering the Initiation and Development of Au–Cu–As Mining in the High Andes of Northern Chile. Environ. Geochem. Health 2006, 28, 431–443. [Google Scholar] [CrossRef]
- Oyarzún, J.; Castillo, D.; Maturana, H.; Kretschmer, N.; Soto, G.; Amezaga, J.M.; Rötting, T.S.; Younger, P.L.; Oyarzún, R. Abandoned Tailings Deposits, Acid Drainage and Alluvial Sediments Geochemistry, in the Arid Elqui River Basin, North-Central Chile. J. Geochem. Explor. 2012, 115, 47–58. [Google Scholar] [CrossRef]
- Oyarzún, J.; Núñez, J.; Maturana, H.; Oyarzún, R. Technical Note: The El Indio Mine Closure Plan Effects Over the Water Quality of the Upper Elqui Basin. Environ. Eng. Geosci. 2018, 24, 349–355. [Google Scholar] [CrossRef]
- Oyarzún, J.; Carvajal, M.J.; Maturana, H.; Núñez, J.; Kretschmer, N.; Amezaga, J.M.; Rötting, T.S.; Strauch, G.; Thyne, G.; Oyarzún, R. Hydrochemical and Isotopic Patterns in a Calc-Alkaline Cu- and Au-Rich Arid Andean Basin: The Elqui River Watershed, North Central Chile. Appl. Geochem. 2013, 33, 50–63. [Google Scholar] [CrossRef]
- Díaz, J.A.; Castillo, D.; Oyarzún, R.; Briso, A.; Montecinos, M.; Pastén, P. The Dynamics of Arsenic and Copper in Solid and Aqueous Phases in Reactive Confluences Receiving Acid Drainage: The Role of Turbidity and Particle Size. Environ. Pollut. 2023, 327, 121449. [Google Scholar] [CrossRef]
- Abarca, M.; Guerra, P.; Arce, G.; Montecinos, M.; Escauriaza, C.; Coquery, M.; Pastén, P. Response of Suspended Sediment Particle Size Distributions to Changes in Water Chemistry at an Andean Mountain Stream Confluence Receiving Arsenic Rich Acid Drainage. Hydrol. Process. 2017, 31, 296–307. [Google Scholar] [CrossRef]
- Montecinos, M.; Coquery, M.; Alsina, M.A.; Bretier, M.; Gaillard, J.-F.; Dabrin, A.; Pastén, P. Partitioning of Copper at the Confluences of Andean Rivers. Chemosphere 2020, 259, 127318. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Agricultura; Fundación para la Innovación Agraria. Resultados y Lecciones en Gestión Hídrica del río Elqui para Mejorar la Eficiencia en el Uso del Agua—Opia.CL: Observatorio Para la Innovación Agraria, Agroalimentaria y Forestal; Observatorio para la Innovación Silvoagropecuaria y la Cadena Agroalimentaria; Fundación para la Innovación Agraria: La Reina, Chile, 2020; Available online: https://opia.fia.cl/601/w3-article-116704.html?_external_redirect=articles-116704_archivo_01.pdf (accessed on 6 October 2023).
- INE. Censo de Población y Vivienda; Instituto Nacional de Estadística de Chile: Santiago, Chile, 2024; Available online: https://www.ine.gob.cl/estadisticas/sociales/censos-de-poblacion-y-vivienda/censo-de-poblacion-y-vivienda (accessed on 1 August 2024).
- Biblioteca del Congreso Nacional. Hidrografía Región de Coquimbo Chile Nuestro País. bcn.cl. Available online: https://www.bcn.cl/siit/nuestropais/region4/hidrografia.htm (accessed on 4 August 2024).
- NCh411/6:1998; INN Norma Chilena 411/6:1998. Instituto Nacional de Normalización: Santiago, Chile, 1998. Available online: https://ecommerce.inn.cl/nch4116199841714 (accessed on 21 June 2024).
- ISO 5667-6:2014; ISO 5667-6:2014 Calidad del agua—Muestreo Parte 6: Orientación Sobre el Muestreo de ríos y Arroyos. International Organization for Standardization: Geneva, Switzerland, 2014. Available online: https://www.iso.org/standard/55451.html (accessed on 21 June 2024).
- Rice, E.; Baird, R.; Eaton, A. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Assoc: Washington, DC, USA; American Water Works Assoc: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2017. [Google Scholar]
- Runkel, R.L. One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers; 98–4018; Geological Survey (U.S.): Reston, VA, USA, 1998. [Google Scholar] [CrossRef]
- Castillo, D.; Runkel, R.L.; Duhalde, D.; Pastén, P.; Arumí, J.L.; Oyarzún, J.; Núñez, J.; Maturana, H.; Oyarzún, R. A Simple Low-Cost Approach for Transport Parameter Determination in Mountain Rivers. River Res. Appl. 2022, 38, 173–181. [Google Scholar] [CrossRef]
- Yao, H.; Zhuang, W.; Qian, Y.; Xia, B.; Yang, Y.; Qian, X. Estimating and Predicting Metal Concentration Using Online Turbidity Values and Water Quality Models in Two Rivers of the Taihu Basin, Eastern China. PLoS ONE 2016, 11, e0152491. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, R.B.; Wool, T.A.; Barnwell, T.O. Development of Water Quality Modeling in the United States. Environ. Eng. Res. 2009, 14, 200–210. [Google Scholar] [CrossRef]
- Knightes, C.D.; Ambrose, R.B.; Avant, B.; Han, Y.; Acrey, B.; Bouchard, D.C.; Zepp, R.; Wool, T. Modeling Framework for Simulating Concentrations of Solute Chemicals, Nanoparticles, and Solids in Surface Waters and Sediments: WASP8 Advanced Toxicant Module. Environ. Model. Softw. 2019, 111, 444–458. [Google Scholar] [CrossRef]
- Wool, T.; Ambrose, R.B.; Martin, J.L.; Comer, A. WASP 8: The Next Generation in the 50-Year Evolution of USEPA’s Water Quality Model. Water 2020, 12, 1398. [Google Scholar] [CrossRef]
- Alam, M.A.; Badruzzaman, A.B.M.; Ali, A. Assessing Effect of Climate Change on the Water Quality of the Sitalakhya River Using WASP Model. J. Civ. Eng. IEB 2013, 41, 21–30. [Google Scholar]
- Wang, Q.; Li, S.; Jia, P.; Qi, C.; Ding, F. A Review of Surface Water Quality Models. Sci. World J. 2013, 2013, 231768. [Google Scholar] [CrossRef]
- Camacho, R.A.; Martin, J.L.; Watson, B.; Paul, M.J.; Zheng, L.; Stribling, J. Modeling the Factors Controlling Phytoplankton in the St. Louis Bay Estuary, Mississippi and Evaluating Estuarine Responses to Nutrient Load Modifications. J. Environ. Eng. 2015, 141, 04014067. [Google Scholar] [CrossRef]
- Hosseini, N.; Chun, K.P.; Lindenschmidt, K.-E. Quantifying Spatial Changes in the Structure of Water Quality Constituents in a Large Prairie River within Two Frameworks of a Water Quality Model. Water 2016, 8, 158. [Google Scholar] [CrossRef]
- Mbuh, M.J.; Mbih, R.; Wendi, C. Water Quality Modeling and Sensitivity Analysis Using Water Quality Analysis Simulation Program (WASP) in the Shenandoah River Watershed. Phys. Geogr. 2019, 40, 127–148. [Google Scholar] [CrossRef]
- Ortega, J.B.; Nistal, M.; Martínez, C.; Abarzúa, K.; Rubilar, F. Análisis y Evaluación de Medidas de Reducción de Nutrientes (Nitrógeno y Fósforo) para Incorporar al Plan de Descontaminación del Lago Villarrica; Universidad de La Frontera; Centro de Gestión y Tecnologías del agua; Ministerio del Medio Ambiente: Temuco, Chile, 2019; Available online: http://www.sustentapucon.cl/wp-content/uploads/2019/11/Informe_Final_25-04-2019-1.pdf (accessed on 1 July 2024).
- Hodali, S. Evaluación de la Aplicabilidad del Programa Computacional WASP en la Simulación de la Calidad del Agua del Humedal del río Cruces, Cuenca del río Valdivia, Región de los Ríos, Chile; Memoria Para Optar al Título de Ingeniera Civil; Universidad de Chile: Santiago, Chile, 2021; Available online: https://repositorio.uchile.cl/handle/2250/181638 (accessed on 7 July 2024).
- Obin, N.; Tao, H.; Ge, F.; Liu, X. Research on Water Quality Simulation and Water Environmental Capacity in Lushui River Based on WASP Model. Water 2021, 13, 2819. [Google Scholar] [CrossRef]
- Bai, J.; Zhao, J.; Zhang, Z.; Tian, Z. Assessment and a Review of Research on Surface Water Quality Modeling. Ecol. Model. 2022, 466, 109888. [Google Scholar] [CrossRef]
- Rojas Rojas, J.P. Evaluación del Soporte WASP Para la Simulación de la Calidad del Agua Superficial: Caso Cuenca del río Mataquito; Memoria para optar al Título de Ingeniero Civil; Universidad de Chile: Santiago, Chile, 2022; Available online: https://repositorio.uchile.cl/handle/2250/185979 (accessed on 6 June 2024).
- Deepa Varsa, K.C.; AAbdul Wahid, A.R.; Arunbabu, E.; Antony Kishoare, J.; Priyadharshini, N. Water Quality Simulation Using the WASP Model for Eutrophication Control in a South Indian Reservoir. Water Pract. Technol. 2023, 18, 2740–2758. [Google Scholar] [CrossRef]
- Żelazny, M.; Bryła, M.; Ozga-Zielinski, B.; Walczykiewicz, T. Applicability of the WASP Model in an Assessment of the Impact of Anthropogenic Pollution on Water Quality—Dunajec River Case Study. Sustainability 2023, 15, 2444. [Google Scholar] [CrossRef]
- Caruso, B.S.; Bishop, M. Seasonal and Spatial Variation of Metal Loads from Natural Flows in the Upper Tenmile Creek Watershed, Montana. Mine Water Environ. 2009, 28, 166–181. [Google Scholar] [CrossRef]
- Caruso, B.S. Water Quality Simulation for Planning Restoration of a Mined Watershed. Water Air Soil Pollut. 2003, 150, 359–382. [Google Scholar] [CrossRef]
- Caruso, B. Modeling Metals Transport and Sediment/Water Interactions in a Mining Impacted Mountain Stream. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 1603–1615. [Google Scholar] [CrossRef]
- Caruso, B. Simulation of Metals Total Maximum Daily Loads and Remediation in a Mining-Impacted Stream. J. Environ. Eng. 2005, 131, 777–789. [Google Scholar] [CrossRef]
- Cuello, J.M.; Trento, A.E.; Alvarez, A.M. Transporte De Sedimentos Y Metales Pesados Con Wasp 7.0. Mecánica Comput. 2006, XXV, 1425–1440. [Google Scholar]
- Ramos-Ramírez, L.Á.; Guevara-Luna, M.A.; Chiriví-Salomón, J.S.; Muñoz-Nieto, D.M. Simulation of Cr-III Dispersion in the High Bogotá River Basin Using the WASP Model. Rev. Fac. Ing. Univ. Antioq. 2019, 131, 30–40. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Wodrich, R.; Hesse, C. The Effects of Scaling and Model Complexity in Simulating the Transport of Inorganic Micropollutants in a Lowland River Reach. Water Qual. Res. J. 2006, 41, 24–36. [Google Scholar] [CrossRef]
- Lin, Y.; Larssen, T.; Vogt, R.D.; Feng, X.; Zhang, H. Modelling Transport and Transformation of Mercury Fractions in Heavily Contaminated Mountain Streams by Coupling a GIS-Based Hydrological Model with a Mercury Chemistry Model. Sci. Total Environ. 2011, 409, 4596–4605. [Google Scholar] [CrossRef]
- Strauch, G.; Oyarzún, J.; Fiebig-Wittmaack, M.; González, E. Contributions of the Different Water Sources to the Elqui River Runoff (Northern Chile) Evaluated by H/O Isotopes. Isot. Environ. Health Stud. 2006, 42, 303–322. [Google Scholar] [CrossRef]
- Ambrose, R.B.; Wool, T. WASP8 Stream Transport—Model Theory and User’s Guide—Supplement to Water Quality Analysis Simulation Program (WASP) User Documentation. 2017. Available online: https://www.epa.gov/sites/default/files/2018-05/documents/stream-transport-user-guide.pdf (accessed on 1 July 2023).
- Ambrose, B.; Avant, B.; Han, Y.; Knightes, C.; Wool, T. Water Quality Assessment Simulation Program (WASP8): Upgrades to the Advanced Toxicant Module for Simulating Dissolved Chemicals, Nanomaterials, and Solids. 2017. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=338180&Lab=NERL (accessed on 7 January 2023).
- Espejo, L.; Kretschmer, N.; Oyarzún, J.; Meza, F.; Núñez, J.; Maturana, H.; Soto, G.; Oyarzo, P.; Garrido, M.; Suckel, F.; et al. Application of Water Quality Indices and Analysis of the Surface Water Quality Monitoring Network in Semiarid North-Central Chile. Environ. Monit. Assess 2012, 184, 5571–5588. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Garneau, C.; Sauvage, S.; Sánchez-Pérez, J.-M.; Lofts, S.; Brito, D.; Neves, R.; Probst, A. Modelling Trace Metal Transfer in Large Rivers under Dynamic Hydrology: A Coupled Hydrodynamic and Chemical Equilibrium Model. Environ. Model. Softw. 2017, 89, 77–96. [Google Scholar] [CrossRef]
- Aye, P.; Koontanakulvong, S.; Tran, L. Estimation of Groundwater Flow Budget in the Upper Central Plain, Thailand from Regional Groundwater Model. Internet J. Soc. Soc. Manag. Syst. 2018, 11, sms17-3216. [Google Scholar]
- Lufi, S.; Suhartanto, E.; Rispiningtati, R. Hydrological Analysis of TRMM (Tropical Rainfall Measuring Mission) Data in Lesti Sub Watershed. Civ. Environ. Sci. J. 2020, III, 18–30. [Google Scholar] [CrossRef]
- Guerra, P.; Gonzalez, C.; Escauriaza, C.; Pizarro, G.; Pastén, P. Incomplete Mixing in the Fate and Transport of Arsenic at a River Affected by Acid Drainage. Water Air Soil Pollut. 2016, 227, 1–20. [Google Scholar] [CrossRef]
- Flores, M.; Núñez, J.; Oyarzún, J.; Freixas, G.; Maturana, H.; Oyarzún, R. Surface Water Quality in a Sulfide Mineral-Rich Arid Zone in North-Central Chile: Learning from a Complex Past, Addressing an Uncertain Future. Hydrol. Process. 2016, 31, 498–513. [Google Scholar] [CrossRef]
- Hernandez, V.; Arumí, J.L.; Boll, J.; Duhalde, D.; MacDonell, S.; Oyarzún, R. Streamflow–Concentration Relationships of Surface Water in the Choapa Basin: Historical Analysis and Projections under Climate Change. Hydrol. Sci. J. 2023, 68, 1250–1263. [Google Scholar] [CrossRef]
- Jung, H.-B.; Yun, S.-T.; Mayer, B.; Kim, S.-O.; Park, S.-S.; Lee, P.-K. Transport and Sediment–Water Partitioning of Trace Metals in Acid Mine Drainage: An Example from the Abandoned Kwangyang Au–Ag Mine Area, South Korea. Environ. Geol 2005, 48, 437–449. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Yang, K. Assessment and Sources of Heavy Metals in Suspended Particulate Matter in a Tropical Catchment, Northeast Thailand. J. Clean. Prod. 2020, 265, 121898. [Google Scholar] [CrossRef]
- Sedeño-Díaz, J.E.; López-López, E.; Mendoza-Martínez, E.; Rodríguez-Romero, A.J.; Morales-García, S.S. Distribution Coefficient and Metal Pollution Index in Water and Sediments: Proposal of a New Index for Ecological Risk Assessment of Metals. Water 2020, 12, 29. [Google Scholar] [CrossRef]
- van Vliet, M.T.H.; Zwolsman, J.J.G. Impact of Summer Droughts on the Water Quality of the Meuse River. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Galán, E.; Gómez-Ariza, J.L.; González, I.; Fernández-Caliani, J.C.; Morales, E.; Giráldez, I. Heavy Metal Partitioning in River Sediments Severely Polluted by Acid Mine Drainage in the Iberian Pyrite Belt. Appl. Geochem. 2003, 18, 409–421. [Google Scholar] [CrossRef]
- Hamad, S.H.; Schauer, J.J.; Shafer, M.M.; Al-Raheem, E.A.; Satar, H. The Distribution between the Dissolved and the Particulate Forms of 49 Metals across the Tigris River, Baghdad, Iraq. Sci. World J. 2012, 2012, 246059. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Li, S.; Liu, Q.; Jiang, F.; Hu, J. Distribution and Partitioning of Heavy Metals in Water and Sediments of a Typical Estuary (Modaomen, South China): The Effect of Water Density Stratification Associated with Salinity. Environ. Pollut. 2021, 287, 117277. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; List, E.; Koh, R.; Imberger, J.; Brooks, N. Mixing in Inland and Coastal Waters; Academic Press Inc: Cambridge, MA, USA, 1979; ISBN 978-0-08-051177-1. [Google Scholar]
- Chapra, S.C. Surface Water-Quality Modeling; Waveland Press: Long Grove, IL, USA, 2008; ISBN 1-57766-605-4. [Google Scholar]
- Bitar Alvarez, J.D.; Camacho, L.A. Implementación de un Modelo de Transporte de Metales Pesados en el Río Magdalena Tramo Girardot-Honda. Memoria para Optar al Título de Magíster en Ingeniería Civil. Universidad de Los Andes, Bogotá, Colombia. 2005. Available online: https://repositorio.uniandes.edu.co/entities/publication/4be1c1dc-f4ed-40f9-8d21-1a49848dd99f (accessed on 7 September 2023).
- Willmott, C.J. On the Validation of Models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
Category | RRMSE (%) | R2 | d |
---|---|---|---|
Very good | RRMSE ≤ 19 | 0.80–1.00 | 0.80–1.00 |
Good | 20 ≤ RRMSE ≤ 49 | 0.60–0.79 | 0.60–0.79 |
Acceptable | 50 ≤ RRMSE ≤ 79 | 0.40–0.59 | 0.40–0.59 |
Poor | 80 ≤ RRMSE ≤ 100 | 0.20–0.39 | 0.20–0.39 |
Insufficient | >100 | 0.00–0.19 | 0.00–0.19 |
Locations | Al Tot (mg/L) | Al Diss (mg/L) | Fe Tot (mg/L) | Fe Diss (mg/L) | As Tot (µg/L) | As Diss (µg/L) | Cu Tot (mg/L) | Cu Diss (mg/L) | SO42− (mg/L) | pH | Q obs (m3/s) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ll-1 (2018) (HW) | 0.10 | <0.002 | 0.16 | 0.04 | 10.63 | 3.32 | 0.013 | 0.006 | 83.1 | 8.13 | 0.92 |
Ll-1 (2019) (HW) | 0.20 | 0.046 | <0.01 | <0.01 | 12.60 | 7.35 | 0.005 | 0.004 | 134.1 | 8.20 | 1.07 |
Avg. La Laguna River (n = 2) | 0.15 | 0.024 | 0.08 | 0.02 | 11.62 | 5.34 | 0.009 | 0.005 | 108.6 | 8.17 | 1.00 |
To-1 (2018) (T) | 27.54 | 18.300 | 8.98 | 2.65 | 305.82 | <0.03 | 11.850 | 9.620 | 1099.0 | 4.50 | 0.38 |
To-1 (2019) (T) | 13.69 | 13.524 | 8.90 | 2.57 | 305.50 | 14.24 | 7.111 | 7.036 | 958.0 | 4.43 | 0.50 |
Avg. Toro River (n = 2) | 20.62 | 15.912 | 8.94 | 2.61 | 305.66 | 7.13 | 9.481 | 8.328 | 1028.5 | 4.47 | 0.44 |
Tu-1 (2018) (C) | 6.49 | <0.002 | 2.22 | 0.07 | 94.84 | 0.32 | 2.550 | 0.095 | 360.4 | 7.58 | 1.67 |
Tu-1 (2019) (C) | 3.03 | 0.031 | 2.12 | <0.01 | 84.16 | <0.03 | 1.442 | 0.036 | 297.0 | 7.70 | 3.22 |
Tu-2 (2018) (C) | 6.51 | 0.031 | 2.30 | 0.10 | 105.50 | 5.21 | 2.490 | 0.076 | 391.6 | 7.86 | 3.22 |
Tu-2 (2019) (C) | 2.63 | 0.033 | 1.06 | 0.24 | 52.39 | <0.03 | 1.330 | 0.026 | 311.0 | 8.16 | 2.10 |
Tu-3 (2018) (C) | 5.06 | 0.080 | 1.73 | 0.05 | 78.52 | 4.24 | 1.850 | 0.044 | 283.0 | 7.99 | 4.74 |
Tu-3 (2018) (C) | 2.29 | 0.082 | 1.28 | <0.01 | 54.00 | <0.03 | 1.099 | 0.029 | 262.4 | 8.12 | 4.78 |
Tu-4 (2018) (C) | 3.50 | <0.002 | 1.42 | 0.05 | 62.38 | 3.63 | 1.120 | 0.049 | 275.6 | 7.95 | 6.64 |
Tu-4 (2019) (C) | 1.94 | 0.241 | 0.97 | <0.01 | 49.00 | <0.03 | 0.819 | 0.024 | 250.9 | 8.06 | 3.00 |
Tu-5 (2018) (C) | 3.11 | <0.002 | 1.27 | 0.05 | 51.15 | 3.91 | 1.000 | 0.049 | 251.7 | 7.91 | 4.17 |
Tu-5 (2019) (C) | 1.60 | 0.034 | 0.82 | <0.01 | 37.54 | <0.03 | 0.664 | 0.019 | 248.5 | 7.91 | 2.81 |
Avg. Turbio River (n = 10) | 3.62 | 0.054 | 1.52 | 0.06 | 66.95 | 1.74 | 1.436 | 0.045 | 293.2 | 7.92 | 3.64 |
In-1 (2018) (T) | 0.68 | <0.002 | 0.35 | 0.04 | 3.75 | <0.03 | 0.088 | 0.037 | 78.1 | 7.52 | 0.72 |
In-1 (2019) (T) | 0.32 | 0.025 | 0.09 | <0.01 | <0.03 | <0.03 | 0.025 | 0.007 | 124.2 | 8.15 | 0.70 |
Avg. Incaguaz River (n = 2) | 0.50 | 0.01 | 0.22 | 0.02 | 1.88 | <0.03 | 0.057 | 0.022 | 101.2 | 7.84 | 0.71 |
Cl-1 (2018) (T) | 0.15 | <0.002 | 0.26 | <0.01 | 4.16 | 0.64 | 0.006 | 0.004 | 64.1 | 7.74 | 2.20 |
Cl-1 (2019) (T) | 0.03 | 0.005 | <0.01 | <0.01 | <0.03 | <0.03 | 0.004 | 0.003 | 75.7 | 7.97 | 1.17 |
Avg. Claro River (n = 2) | 0.09 | 0.003 | 0.13 | <0.01 | 2.09 | 0.33 | 0.005 | 0.003 | 69.9 | 7.86 | 1.69 |
El-1 (2018) (C) | 2.02 | 0.029 | 0.84 | 0.07 | 29.24 | 3.12 | 0.579 | 0.056 | 192.5 | 8.19 | 4.31 |
El-1 (2019) (C) | 1.20 | 0.048 | 0.69 | <0.01 | 24.30 | <0.03 | 0.480 | 0.024 | 201.6 | 8.08 | 4.73 |
El-2 (2018) (C) | 2.16 | <0.002 | 1.01 | 0.11 | 34.93 | 6.84 | 0.660 | 0.036 | 193.3 | 8.18 | 7.71 |
El-2 (2019) (C) | 1.02 | 0.017 | 0.48 | <0.01 | 20.60 | <0.03 | 0.427 | 0.017 | 193.3 | 8.30 | 2.34 |
El-3 (2018) (C) | 1.03 | <0.002 | 0.70 | 0.08 | 12.70 | 7.97 | 0.278 | 0.031 | 204.9 | 7.81 | 4.66 |
El-3 (2019) (C) | 0.42 | 0.022 | 0.02 | <0.01 | 1.72 | <0.03 | 0.149 | 0.020 | 205.6 | 7.91 | 5.40 |
Avg. Elqui River (n = 6) | 1.31 | 0.020 | 0.62 | 0.05 | 20.58 | 3.00 | 0.429 | 0.030 | 198.5 | 8.08 | 4.86 |
Avg. UWER (n = 24) | 3.61 | 1.357 | 1.57 | 0.26 | 59.81 | 2.54 | 1.502 | 0.723 | 280.8 | 7.68 | 3.05 |
Indicator | Q | U | SO42− |
---|---|---|---|
RRMSE (%) | 0.0 | 0.0 | 10.9 |
R2 | 1.0 | 1.0 | 0.9 |
D | 1.0 | 1.0 | 0.9 |
Indicators | Water Column | Sediments | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | As | Cu | Al | Fe | As | Cu | |||||
Tot | Diss | Tot | Diss | Tot | Diss | Tot | Diss | |||||
RRMSE (%) | 43.5 | 43.8 | 25.9 | 56.3 | 61.4 | 26.2 | 42.4 | 28.6 | 3.2 | 3.4 | 3.1 | 6.4 |
R2 | 0.8 | 0.9 | 0.7 | 0.3 | 0.7 | 0.9 | 0.9 | 0.4 | 1.0 | 1.0 | 1.0 | 0.9 |
d | 0.8 | 0.9 | 0.9 | 0.6 | 0.7 | 0.9 | 0.9 | 0.7 | 1.0 | 0.9 | 1.0 | 0.9 |
Indicators | Q | U | SO42− |
---|---|---|---|
RRMSE (%) | 0.0 | 0.0 | 4.7 |
R2 | 1.0 | 1.0 | 0.9 |
d | 1.0 | 1.0 | 0.9 |
Indicators | Water Column | Sediments | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Al | Fe | As | Cu | Al | Fe | As | Cu | |||||
Tot | Diss | Tot | Diss | Tot | Diss | Tot | Diss | |||||
RRMSE (%) | 24.1 | 63.4 | 68.9 | 457.9 | 42.5 | 1146.9 | 31.3 | 62.1 | 4.6 | 5.2 | 3.3 | 12.2 |
R2 | 0.8 | 0.7 | 0.8 | 0.0 | 0.8 | 0.3 | 0.9 | 0.1 | 0.9 | 1.0 | 0.9 | 0.8 |
d | 0.9 | 0.9 | 0.8 | 0.2 | 0.9 | 0.0 | 0.9 | 0.1 | 0.9 | 0.9 | 0.9 | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo, D.; Oyarzún, R.; Pastén, P.; Knightes, C.D.; Duhalde, D.; Arumí, J.L.; Núñez, J.; Díaz, J.A. Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach. Water 2025, 17, 1905. https://doi.org/10.3390/w17131905
Castillo D, Oyarzún R, Pastén P, Knightes CD, Duhalde D, Arumí JL, Núñez J, Díaz JA. Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach. Water. 2025; 17(13):1905. https://doi.org/10.3390/w17131905
Chicago/Turabian StyleCastillo, Daniela, Ricardo Oyarzún, Pablo Pastén, Christopher D. Knightes, Denisse Duhalde, José Luis Arumí, Jorge Núñez, and José Antonio Díaz. 2025. "Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach" Water 17, no. 13: 1905. https://doi.org/10.3390/w17131905
APA StyleCastillo, D., Oyarzún, R., Pastén, P., Knightes, C. D., Duhalde, D., Arumí, J. L., Núñez, J., & Díaz, J. A. (2025). Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach. Water, 17(13), 1905. https://doi.org/10.3390/w17131905