Dynamics of Wetlands in Ifrane National Park, Morocco: An Approach Using Satellite Imagery and Spectral Indices
Abstract
1. Introduction
2. Methodology and Study Area
2.1. Study Area
2.2. Methodology
2.2.1. Satellite Image Analysis
- The NDWI (Normalized Difference Water Index):
- The MNDWI Index (Modified Normalized Difference Water Index):
- The EWI Index (Enhanced Water Index):
- The AWEI Index (Automated Water Extraction Index):
- The ANDWI Index (Augmented Normalized Difference Water Index):
2.2.2. Trend and Breakout Tests
- Mann-Kendall Trend Test
- Pettitt’s Test
2.2.3. Climate Indices
- Reconnaissance Drought Index (RDI):
- The Standardized Precipitation Evapotranspiration Index (SPEI)
2.2.4. Mapping the Land Evolution of the Park
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tv, B.; Kn, N. A Comparative Study of Spectral Indices for Surface Water Delineation Using Landsat 8 Images. In Proceedings of the 2019 International Conference on Data Science and Communication (IconDSC), Bangalore, India, 1–2 March 2019. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Sadegh, M. Augmented Normalized Difference Water Index for Improved Surface Water Monitoring. Environ. Model. Softw. 2021, 140, 105030. [Google Scholar] [CrossRef]
- Sohl, T.; Dornbierer, J.; Wika, S.; Robison, C. Remote Sensing as the Foundation for High-Resolution United States Landscape Projections—The Land Change Monitoring, Assessment, and Projection (LCMAP) Initiative. Environ. Model. Softw. 2019, 120, 104495. [Google Scholar] [CrossRef]
- Szabó, S.; Gácsi, Z.; Balázs, B. Specific Features of NDVI, NDWI and MNDWI as Reflected in Land Cover Categories. Landsc. Environ. 2016, 10, 194–202. [Google Scholar] [CrossRef]
- Sun, Q.; Li, J. A Method for Extracting Small Water Bodies Based on DEM and Remote Sensing Images. Sci. Rep. 2024, 14, 760. [Google Scholar] [CrossRef] [PubMed]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of Ecosystem Service Values in Response to Land Use/Land Cover Dynamics in Munessa-Shashemene Landscape of the Ethiopian Highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Alatalo, J.M. Impacts of Rural Tourism-Driven Land Use Change on Ecosystems Services Provision in Erhai Lake Basin, China. Ecosyst. Serv. 2020, 42, 101081. [Google Scholar] [CrossRef]
- Wong, C.P.; Jiang, B.; Kinzig, A.P.; Lee, K.N.; Ouyang, Z. Linking Ecosystem Characteristics to Final Ecosystem Services for Public Policy. Ecol. Lett. 2015, 18, 108–118. [Google Scholar] [CrossRef]
- Sahoo, G.B.; Schladow, S.G. Impacts of Climate Change on Lakes and Reservoirs Dynamics and Restoration Policies. Sustain. Sci. 2008, 3, 189–199. [Google Scholar] [CrossRef]
- Rad, A.M.; Ghahraman, B.; Khalili, D.; Ghahremani, Z.; Ardakani, S.A. Integrated Meteorological and Hydrological Drought Model: A Management Tool for Proactive Water Resources Planning of Semi-Arid Regions. Adv. Water Resour. 2017, 107, 336–353. [Google Scholar] [CrossRef]
- Ogilvie, A.; Belaud, G.; Massuel, S.; Mulligan, M.; Le Goulven, P.; Calvez, R. Surface Water Monitoring in Small Water Bodies: Potential and Limits of Multi-Sensor Landsat Time Series. Hydrol. Earth Syst. Sci. 2018, 22, 4349–4380. [Google Scholar] [CrossRef]
- Wang, S.; Baig, M.H.A.; Zhang, L.; Jiang, H.; Ji, Y.; Zhao, H.; Tian, J. A Simple Enhanced Water Index (EWI) for Percent Surface Water Estimation Using Landsat Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 90–97. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Guo, Q.; Pu, R.; Li, J.; Cheng, J. A Weighted Normalized Difference Water Index for Water Extraction Using Landsat Imagery. Int. J. Remote Sens. 2017, 38, 5430–5445. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A New Technique for Surface Water Mapping Using Landsat Imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Özelkan, E. Water Body Detection Analysis Using NDWI Indices Derived from Landsat-8 OLI. Polish J. Environ. Stud. 2020, 29, 1759–1769. [Google Scholar] [CrossRef]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for Assessment of Waterlogging by Integrating Digital Elevation Model and Groundwater Level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Avtar, R.; Komolafe, A.A.; Kouser, A.; Singh, D.; Yunus, A.P.; Dou, J.; Kurniawan, T.A. Assessing Sustainable Development Prospects Through Remote Sensing: A Review. Remote Sens. Appl. Soc. Environ. 2020, 20, 100402. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite Remote Sensing for Water Resources Management: Potential for Supporting Sustainable Development in Data-Poor Regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef]
- Gašparović, M.; Singh, S.K. Urban Surface Water Bodies Mapping Using the Automatic K-Means Based Approach and Sentinel-2 Imagery. Geocarto Int. 2023, 38, 2148757. [Google Scholar] [CrossRef]
- Zhang, T.; Ren, H.; Qin, Q.; Zhang, C.; Sun, Y. Surface Water Extraction From Landsat 8 OLI Imagery Using the LBV Transformation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4417–4429. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Taylor, P.; Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2012, 33, 37–41. [Google Scholar] [CrossRef]
- Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of Ponds from High-Spatial Resolution Remote Sensing: Application to Rift Valley Fever Epidemics in Senegal. Remote Sens. Environ. 2007, 106, 66–74. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Sadgui, O.; Khattabi, A. Economic Assessment of Hydrologic Ecosystem Services in Morocco’s Protected Areas: A Case Study of Ifrane National Park. Sustainability 2024, 16, 8800. [Google Scholar] [CrossRef]
- Cheddadi, R.; Kaniewski, D.; Marriner, N.; Bar-Hen, A.; Hurteau, M.D. Come Rain or Come Shine, the Species Richness Will Decline in the Moroccan Mountains. Glob. Ecol. Conserv. 2024, 52, e02986. [Google Scholar] [CrossRef]
- Chillasse, L.; Dakki, M.; Abbassi, M. Valeurs et Fonctions Écologiques des Zones Humides du Moyen Atlas (Maroc). Humed. Mediterráneos 2001, 1, 139–146. [Google Scholar]
- BRL Ingénierie. Plan d’Aménagement et de Protection des Massifs Forestiers de la Province d’Ifrane. 2007, p. 66. Available online: https://rsis.ramsar.org/RISapp/files/32213679/documents/MA2375_lit180815.pdf (accessed on 3 January 2025).
- Ismaili Alaoui, H.; El Asri, B.; Ghazi, S.; Brhadda, N.; Ziri, R. A Framework Payment for Ecosystem Services to Reconstitute Forest Areas Closed to Grazing in the Ifrane National Park (Morocco). IOP Conf. Ser. Earth Environ. Sci. 2022, 1090, 012006. [Google Scholar] [CrossRef]
- Omar, G.; Mohamed, C.; Hasan, O. The Effect of Climate Change on the Variation of Low Flow Rates within Mountainous Basins: Case Study of the Srou Basin-Middle Atlas-Morocco (1976–2016). IOP Conf. Ser. Earth Environ. Sci. 2024, 1398, 012025. [Google Scholar] [CrossRef]
- Hanich, L.; Chehbouni, A.; Gascoin, S.; Boudhar, A.; Jarlan, L.; Tramblay, Y.; Khabba, S. Snow Hydrology in the Moroccan Atlas Mountains. J. Hydrol. Reg. Stud. 2022, 42, 101101. [Google Scholar] [CrossRef]
- Yang, J.; Du, X. An Enhanced Water Index in Extracting Water Bodies from Landsat TM Imagery. Ann. GIS. 2017, 23, 141–148. [Google Scholar] [CrossRef]
- Xie, H.; Luo, X.; Xu, X.; Pan, H.; Tong, X. Evaluation of Landsat 8 OLI Imagery for Unsupervised Inland Water Extraction. Int. J. Remote Sens. 2016, 1161, 1826–1844. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a Drought Index Incorporating Evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Zhao, J.; Liu, Q.; Lu, H.; Wang, Z.; Zhang, K.; Wang, P. Future Droughts in China Using the Standardized Precipitation Evapotranspiration Index (SPEI) Under Multi-Spatial Scales. Nat. Hazards. 2021, 109, 615–636. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hotelling, H.; Pabst, M.R. Rank correlation and tests of signifcance involving No assumption of normality. Ann. Math. Stat. 1936, 7, 29–43. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of precipitation and drought data in Serbia over the period 1980–2010. J. Hydrol. 2013, 494, 32–42. [Google Scholar] [CrossRef]
- Banda, V.D.; Dzwairo, R.B.; Singh, S.K.; Kanyerere, T. Trend analysis of selected hydro-meteorological variables for the Rietspruit sub-basin, South Africa. J. Water Clim. Change 2021, 12, 3099–3123. [Google Scholar] [CrossRef]
- Douglas, E.M.; Vogel, R.M.; Kroll, C.N. Trends in foods and low fows in the United States: Impact of spatial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K.; Mekonnen, A. Spatiotemporal long-term (1950–2009) temperature trend analysis in North Carolina, United States. Teor. Appl. Climatol. 2015, 120, 159–171. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the changepoint problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Bokariouh, F. Effet du débit du goutteur sur les paramètres de végétation et de production du pommier (Malus domestica). End of studies report. Natl. Sch. Agric. Meknes, 2023; unpublished. [Google Scholar]
- El-Asmar, H.M.; Hereher, M.E.; El Kafrawy, S.B. Surface area change detection of the Burullus Lagoon, North of the Nile Delta, Egypt, using water indices: A remote sensing approach. Egypt. J. Remote Sens. Sp. Sci. 2013, 16, 119–123. [Google Scholar] [CrossRef]
- Masocha, M.; Dube, T.; Makore, M.; Shekede, M.D.; Funani, J. Surface water bodies mapping in Zimbabwe using landsat 8 OLI multispectral imagery: A comparison of multiple water indices. Phys. Chem. Earth 2018, 106, 63–67. [Google Scholar] [CrossRef]
- Asfaw, W.; Haile, A.T.; Rientjes, T. Combining multisource satellite data to estimate storage variation of a lake in the Rift Valley Basin, Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102095. [Google Scholar] [CrossRef]
- Slagter, B.; Tsendbazar, N.E.; Vollrath, A.; Reiche, J. Mapping wetland characteristics using temporally dense Sentinel-1 and Sentinel-2 data: A case study in the St. Lucia wetlands, South Africa. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102009. [Google Scholar] [CrossRef]
- Laonamsai, J.; Julphunthong, P.; Saprathet, T.; Kimmany, B.; Ganchanasuragit, T.; Chomcheawchan, P.; Tomun, N. Utilizing NDWI, MNDWI, SAVI, WRI, and AWEI for Estimating Erosion and Deposition in Ping River in Thailand. Hydrology 2023, 10, 70. [Google Scholar] [CrossRef]
- Cheng, J.; Song, C.; Liu, K.; Fan, C.; Ke, L.; Chen, T.; Yao, J. Satellite and UAV-based remote sensing for assessing the flooding risk from Tibetan lake expansion and optimizing the village relocation site. Sci. Total Environ. 2022, 802, 149928. [Google Scholar] [CrossRef]
- Ali, M.I.; Dirawan, G.D.; Hasim, A.H.; Abidin, M.R. Detection of changes in surface water bodies urban area with NDWI and MNDWI methods. Int. J. Adv. Sci. Eng. Inf. Technol. 2019, 9, 946–951. [Google Scholar] [CrossRef]
- Jiménez-Bonilla, A.; Rodríguez-Rodríguez, M.; Yanes, J.L.; Gázquez, F. Impact of climate change on permanent lakes in a semiarid region: Southwestern Mediterranean basin (S Spain). Sci. Total Environ. 2025, 961, 178305. [Google Scholar] [CrossRef]
- Salimi, S.; Almuktar, S.A.; Scholz, M. Impact of climate change on wetland ecosystems: A critical review of experimental wetlands. J. Environ. Manage. 2021, 286, 112160. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.Y.; Ito, M.; Hülsmann, S.; Qin, X.; Lu, X.X.; Liong, S.Y.; Rutschman, P.; Disse, M.; Koivusalo, H. Possible climate change/variability and human impacts, vulnerability of drought-prone regions, water resources and capacity building for Africa. Hydrol. Sci. J. 2016, 61, 1209–1226. [Google Scholar] [CrossRef]
- Kaur, N.; Kaur, S.; Kaur, P.; Aggarwal, R. Impact of climate change on groundwater levels in Sirhind Canal Tract of Punjab, India. Groundw. Sustain. Dev. 2021, 15, 100670. [Google Scholar] [CrossRef]
- Gramz, M.; Batchi, M.; El Bouziani, J.; Azagane, M.H.; El-boukhari, A.; Nafii, A.; Elharrari, Y. Impact of climate change on surface water resources in arid zones-the case of the Ykem watershed in the central plateau of Morocco. E3S Web Conf. 2024, 489, 48904008. [Google Scholar] [CrossRef]
- Singh, L.; Saravanan, S. Impact of climate change on hydrology components using CORDEX South Asia climate model in Wunna, Bharathpuzha, and Mahanadi, India. Environ. Monit. Assess. 2020, 192, 11. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Friedrich, K.; Grossman, R.L.; Huntington, J.; Blanken, P.D.; Lenters, J.; Holman, K.D.; Gochis, D.; Livneh, B.; Prairie, J.; Skeie, E.; et al. Reservoir evaporation in the Western United States. Bull. Am. Meteorol. Soc. 2018, 99, 167–187. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative water loss of 1.42 million global lakes. Nat. Commun. 2022, 13, 31125. [Google Scholar] [CrossRef]
- Cooley, S.W.; Ryan, J.C.; Smith, L.C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81. [Google Scholar] [CrossRef]
- Vystavna, Y.; Harjung, A.; Monteiro, L.R.; Matiatos, I.; Wassenaar, L.I. Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. Nat. Commun. 2021, 12, 27569. [Google Scholar] [CrossRef]
- La Fuente, S.; Jennings, E.; Lenters, J.D.; Verburg, P.; Tan, Z.; Perroud, M.; Janssen, A.B.G.; Woolway, R.I. Ensemble modeling of global lake evaporation under climate change. J. Hydrol. 2024, 631, 130647. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Jehan, S.; Sarwar, T.; Khattak, S.K.; Khan, M.J. Climate Change and its Impact on Water Resources of Selected Areas in District Chitral with High Climatic Vulnerabilities. Sarhad J. Agric. 2024, 40, 1424–1435. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Mashala, M.J.; Dube, T.; Mudereri, B.T.; Ayisi, K.K.; Ramudzuli, M.R. A Systematic Review on Advancements in Remote Sensing for Assessing and Monitoring Land Use and Land Cover Changes Impacts on Surface Water Resources in Semi-Arid Tropical Environments. Remote Sens. 2023, 15, 163926. [Google Scholar] [CrossRef]
- Yang, L.; Driscol, J.; Sarigai, S.; Wu, Q.; Lippitt, C.D.; Morgan, M. Towards Synoptic Water Monitoring Systems: A Review of AI Methods for Automating Water Body Detection and Water Quality Monitoring Using Remote Sensing. Sensors 2022, 22, 62416. [Google Scholar] [CrossRef]
- Wu, F.; Mu, Y.; Chang, H.; Zhao, X.; Giesy, J.P.; Wu, K.B. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids. Environ. Sci. Technol. 2013, 47, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Rather, I.A.; Dar, A.Q. Assessing the impact of land use and land cover dynamics on water quality of Dal Lake, NW Himalaya, India. Appl. Water Sci. 2020, 10, 219. [Google Scholar] [CrossRef]
- Peng, J.; Liu, T.; Chen, J.; Li, Z.; Ling, Y.; De Wulf, A.; De Maeyer, P. The conflicts of agricultural water supply and demand under climate change in a typical arid land watershed of Central Asia. J. Hydrol. Reg. Stud. 2023, 47, 101384. [Google Scholar] [CrossRef]
- Elgendy, M.; Hassini, S.; Coulibaly, P. Review of Climate Change Adaptation Strategies in Water Management. J. Hydrol. Eng. 2024, 29, 03123001. [Google Scholar] [CrossRef]
- Haden, V.R.; Niles, M.T.; Lubell, M.; Perlman, J.; Jackson, L.E. Global and Local Concerns: What Attitudes and Beliefs Motivate Farmers to Mitigate and Adapt to Climate Change? PLoS ONE 2012, 7, 52882. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Chen, R. Assessing the Impact of Land Use and Land Cover Change on Environmental Parameters in Khyber Pakhtunkhwa, Pakistan: A Comprehensive Study and Future Projections. Remote Sens. 2025, 17, 170170. [Google Scholar] [CrossRef]
- Tarkeshdouz, A.; Mousavi, S.J.; Ramezani Khojeen, A.; Aghaie, V. Remote Sensing–Assisted Basin-Scale Water Resources Management Considering Climate Change and Human Activities Impacts. J. Hydrol. Eng. 2021, 26, 04021037. [Google Scholar] [CrossRef]
- Zhan, W.; Bai, Y.; Li, C.; Zhang, X.; Xu, J. Long-Term Effect of Urban Expansion on Wetland Ecosystem: A Remote Sensing Study in the Yangtze River Delta Region, China. Geogr. J. 2023, 189, 122–131. [Google Scholar] [CrossRef]
Lake Name | Latitude | Longitude | Altitude (m) | Area (ha) |
---|---|---|---|---|
Dayet Aoua | 33.654795 | −5.040634 | 1468 | 512 |
Dayet Ifrah | 33.559808 | −4.927445 | 1614 | 250 |
Dayet Hachlaf | 33.547118 | −5.002192 | 1668 | 70 |
Dayet Afennourir | 33.280131 | −5.252495 | 1800 | 800 |
Dayet Yffer | 33.606774 | −4.907936 | 1508 | 7 |
Dayet Afourgaa | 33.614352 | −4.877976 | 1415 | 12 |
Dayet Aoua | Dayet Ifrah | Dayet Yffer | Dayet Afourgaa | Dayet Hachlaf | Dayet Afennourir | |
---|---|---|---|---|---|---|
NDWI | 118.8 | 77.1 | 65.1 | 99.4 | 227.9 | 76.5 |
MNDWI | 99.5 | 56.1 | 51.8 | 89.1 | 134.4 | 46.7 |
ANDWI | 120.7 | 61.0 | 63.0 | 101.3 | 174.8 | 55.8 |
EWI | 99.5 | 56.0 | 51.8 | 89.1 | 134.4 | 46.7 |
AWEI | 93.1 | 56.1 | 52.5 | 75.5 | 143.2 | 48.1 |
Water Body | Index | Z-Score | p-Value | Trend Type | Significant? (α = 0.05) |
---|---|---|---|---|---|
Dayet Aoua | AWEI | −0.71 | 0.476 | No trend | No |
NDWI | −1.24 | 0.216 | Slight decrease | No | |
MNDWI | −0.58 | 0.561 | No trend | No | |
EWI | −0.53 | 0.595 | No trend | No | |
ANDWI | −1.14 | 0.255 | Slight decrease | No | |
Dayet Ifrah | AWEI | −1.73 | 0.0832 | Decreasing trend | No |
NDWI | −1.77 | 0.0768 | Decreasing trend | No (borderline) | |
MNDWI | −1.68 | 0.0931 | Decreasing trend | No | |
EWI | −1.77 | 0.0768 | Decreasing trend | No (borderline) | |
ANDWI | −1.80 | 0.0716 | Decreasing trend | No (borderline) | |
Dayet Yffer | AWEI | 2.45 | 0.0142 | Increasing | Yes |
NDWI | 1.91 | 0.056 | Slight increase | No (borderline) | |
MNDWI | 2.64 | 0.0083 | Increasing | Yes | |
EWI | 2.41 | 0.0159 | Increasing | Yes | |
ANDWI | 2.72 | 0.0065 | Increasing | Yes | |
Dayet Afourgaa | AWEI | 1.49 | 0.136 | Slight increase | No |
NDWI | 1.47 | 0.140 | Slight increase | No | |
MNDWI | 0.99 | 0.323 | No trend | No | |
EWI | 1.21 | 0.225 | Slight increase | No | |
ANDWI | 0.94 | 0.348 | No trend | No | |
Dayet Hachlaf | AWEI | 2.01 | 0.044 | Increasing | Yes |
NDWI | 1.91 | 0.056 | Slight increase | No (borderline) | |
MNDWI | 2.43 | 0.015 | Increasing | Yes | |
EWI | 2.48 | 0.013 | Increasing | Yes | |
ANDWI | 2.19 | 0.028 | Increasing | Yes | |
Dayet Afennourir | AWEI | 4.20 | 0.000026 | Increasing | Yes |
NDWI | 4.26 | 0.000020 | Increasing | Yes | |
MNDWI | 4.29 | 0.000018 | Increasing | Yes | |
EWI | 4.26 | 0.000020 | Increasing | Yes | |
ANDWI | 4.16 | 0.000031 | Increasing | Yes |
Water Body | Index | Year of Change | p-Value | Significance Level |
---|---|---|---|---|
Dayet Aoua | AWEI | 2016 | 0.016 | Significant |
NDWI | 2016 | 0.019 | Significant | |
MNDWI | 2016 | 0.019 | Significant | |
EWI | 2016 | 0.019 | Significant | |
ANDWI | 2016 | 0.034 | Significant | |
Dayet Ifrah | AWEI | 2009 | 0.058 | Weakly significant |
NDWI | 2009 | 0.012 | Very significant | |
MNDWI | 2009 | 0.058 | Weakly significant | |
EWI | 2008 | 0.054 | Weakly significant | |
ANDWI | 2009 | 0.034 | Significant | |
Dayet Yffer | AWEI | 2010 | 0.012 | Very significant |
NDWI | 2010 | 0.006 | Very significant | |
MNDWI | 2009 | 0.015 | Significant | |
EWI | 2009 | 0.012 | Very significant | |
ANDWI | 2006 | 0.027 | Significant | |
Dayet Afourgaa | AWEI | 2013 | 0.010 | Very significant |
NDWI | 2011 | 0.030 | Significant | |
MNDWI | 2012 | 0.020 | Significant | |
EWI | … | … | … | |
ANDWI | … | … | … | |
Dayet Hachlaf | AWEI | 2016 | 0.07658 | Not significant |
NDWI | 2009 | 0.18826 | Not significant | |
MNDWI | 2016 | 0.07658 | Not significant | |
EWI | 2016 | 0.07658 | Not significant | |
ANDWI | 2016 | 0.21156 | Not significant | |
Dayet Afennourir | AWEI | 2009 | 0.0316 | Significant |
NDWI | 2009 | 0.0117 | Very significant | |
MNDWI | 2009 | 0.0270 | Significant | |
EWI | 2009 | 0.0316 | Significant | |
ANDWI | 2009 | 0.0098 | Very significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Addou, R.; Bhiry, N.; Achiban, H. Dynamics of Wetlands in Ifrane National Park, Morocco: An Approach Using Satellite Imagery and Spectral Indices. Water 2025, 17, 1869. https://doi.org/10.3390/w17131869
Addou R, Bhiry N, Achiban H. Dynamics of Wetlands in Ifrane National Park, Morocco: An Approach Using Satellite Imagery and Spectral Indices. Water. 2025; 17(13):1869. https://doi.org/10.3390/w17131869
Chicago/Turabian StyleAddou, Rachid, Najat Bhiry, and Hassan Achiban. 2025. "Dynamics of Wetlands in Ifrane National Park, Morocco: An Approach Using Satellite Imagery and Spectral Indices" Water 17, no. 13: 1869. https://doi.org/10.3390/w17131869
APA StyleAddou, R., Bhiry, N., & Achiban, H. (2025). Dynamics of Wetlands in Ifrane National Park, Morocco: An Approach Using Satellite Imagery and Spectral Indices. Water, 17(13), 1869. https://doi.org/10.3390/w17131869