Taxonomic and Functional Responses of Macroinvertebrates to Hydrological Changes and Invasive Plants in an NW Patagonia Riparian Corridor (Argentina)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling
2.3. Taxonomic and Functional Macroinvertebrate Diversity
2.4. Statistical Analyses
3. Results
3.1. Environmental Variables
3.2. Taxonomic Diversity
3.3. Functional Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naiman, R.J.; Decamps, H. The Ecology of Interfaces: Riparian Zones. Annu. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Richardson, D.M.; Holmes, P.M.; Esler, K.J.; Galatowitsch, S.M.; Stromberg, J.C.; Kirkman, S.P.; Pysek, P.; Hobbs, R.J. Riparian vegetation: Degradation, alien plant invasions and restoration prospects. Divers. Distrib. 2007, 13, 126–139. [Google Scholar] [CrossRef]
- Gregory, S.V.; Stanley, V.; Swanson, F.J.; McKee, W.A.; Cummins, K. An Ecosystem Perspective of Riparian Zones. BioScience 1991, 41, 540–551. [Google Scholar] [CrossRef]
- Wallace, J.B.; Eggert, S.L.; Meyer, J.L.; Webster, J.R. Multiple Trophic Levels of a Forest Stream Linked to Terrestrial Litter Inputs. Science 1997, 277, 102–104. [Google Scholar] [CrossRef]
- Acuña, V.; Muñoz, I.; Giorgi, A.; Omella, M.; Sabater, F. Drought and postdrought recovery cycles in an intermittent Mediterranean stream: Structural and functional aspects. J. N. Am. Benthol Soc. 2005, 24, 919–923. [Google Scholar] [CrossRef]
- Poff, N.L.; Zimmerman, J.K.H. Ecological responses to altered flow regimes: A literature review to inform the science and management of environmental flows. Freshw. Biol. 2010, 55, 194–205. [Google Scholar] [CrossRef]
- Bunn, S.E.; Edward, D.H.; Loneragan, N.R. Spatial and temporal variation in the macroinvertebrate fauna of streams of the northern jarrah forest, Western Australia: Community structure. Freshw. Biol. 1986, 16, 67–91. [Google Scholar] [CrossRef]
- Tomanova, S.; Tedesco, P.; Campero, M.; Damme, P.; Moya, N.; Oberdorff, T. Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: A test of the River Continuum Concept. Fundam. Appl. Limnol./Arch. Für Hydrobiol. 2007, 170, 233–241. [Google Scholar] [CrossRef]
- Ramírez, A.; Pringle, C.M. Structure and production of a benthic insect assemblage in a neotropical stream. J. N. Am. Benthol. Soc. 1998, 17, 443–463. [Google Scholar] [CrossRef]
- Blanco, F. Interannual variation of macroinvertebrate assemblages in a dry-forested stream in western cordillera: A role for El Niño and La Niña? Bol. Ecotropica: Ecosistemas Trop. 2003, 37, 3–30. [Google Scholar]
- Holmgren, M.; Scheffer, M.; Ezcurra, E.; Gutiérrez, J.R.; Mohren, G.M.J. El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol. Evol. 2001, 16, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Rios-Pulgarin, M.I.; Barletta, M.; Arango-Jaramillo, M.C.; Mancera-Rodriguez, M.J. Habitat Templet Theory: The role of the hydrological cycle on the temporal patterns of macroinvertebrate assemblages in an Andean foothill stream in Colombia. J. Limnol. 2016, 75 (Suppl. 1), 107–120. [Google Scholar]
- Davies, B.; Day, J. Vanishing Waters; University of Cape Town Press: Cape Town, South Africa, 1998. [Google Scholar]
- Fischer, M.; Bossdorf, O.; Gockel, S.; Hänsel, F.; Hemp, A.; Hessenmöller, D.; Weisser, W.W. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 2010, 11, 473–485. [Google Scholar] [CrossRef]
- Maridet, L.; Wasson, J.G.; Philippe, M.; Amoros, C.; Naiman, R.J. Trophic structure of three streams with contrasting riparian vegetation and geomorphology. Arch. Für Hydrobiol. 1998, 144, 61–85. [Google Scholar] [CrossRef]
- McInerney, P.J.; Rees, G.N.; Gawne, B.; Suter, P.; Watson, G.; Stoffels, R.J. Invasive willows drive instream community structure. Freshw. Biology. 2016, 61, 1379–1391. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Pizzolon, L.A. Interactive effects of basin feature and land-use change on macroinvertebrate communities of headwater streams in the Patagonian Andes. River Res. Appl. 2004, 20, 967–983. [Google Scholar] [CrossRef]
- Kinvig, R.G.; Samways, M.J. Conserving dragonflies (Odonata) along streams running through commercial forestry. Odonatology 2000, 29, 195–208. [Google Scholar]
- Carter, J.L.; Resh, V.H.; Hannaford, M.J. Macroinvertebrates as biotic indicators of environmental quality. In Methods in Stream Ecology; Academic Press: New York, NY, USA, 2017; pp. 293–318. [Google Scholar]
- Buss, D.F.; Carlisle, D.M.; Chon, T.S.; Culp, J.; Harding, J.S.; Keizer-Vlek, H.E.; Robinson, W.A.; Strachan, S.; Thirion, C.; Hughes, R.M. Stream biomonitoring using macroinvertebrates around the globe: A comparison of large-scale programs. Environ. Monit. Assess. 2014, 187, 4132. [Google Scholar] [CrossRef]
- Smith, E.P.; Voshell, J.R. Studies of Benthic Macroinvertebrates and Fish in Streams Within EPA Region 3 for Development of Biological Indicators of Ecological Condition. Part 1, Benthic Macroinvertebrates; Final Report; Virginia Polytechnic Institute and State University: Blacksburg, Virginia, USA, 1997. [Google Scholar]
- Moore, A.A.; Palmer, M.A. Invertebrate biodiversity in agricultural and urban headwater streams: Implications for conservation and management. Ecol. Appl. 2005, 15, 1169–1177. [Google Scholar] [CrossRef]
- Fernandes, M.R.; Segurado, P.; Jauch, E.; Ferreira, T. Riparian responses to extreme climate and land-use change scenarios. Sci. Total Environ. 2016, 569–570, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Miserendino, M.L.; Casaux, R.; Archangelsky, M.; Di Prinzio, C.Y.; Brand, C.; Kutschker, A.M. Assessing land-use on water quality, in stream habitat, riparian ecosystem and biodiversity in Patagonia northwest streams. Sci. Total Environ. 2011, 409, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Miserendino, M.L.; Kutschker, A.M.; Brand, C.; La Manna, L.; Di Prinzio, C.Y.; Papazian, G.; Bava, J. Ecological status of a Patagonian mountain river: Usefulness of environmental and biotic metrics for rehabilitation assessment. Environ. Manag. 2016, 57, 1166–1187. [Google Scholar]
- Domínguez, E.; Fernández, H.R. Macroinvertebrados bentónicos sudamericanos. In Sistemática y Biología; Fundación Miguel Lillo: Tucumán, Argentina, 2009; p. 656. [Google Scholar]
- Merrit, R.W.; Cummins, K.W. Trophic relations of macroinvertebrates. In Methods in Stream Ecology; Hahuer, R.F., Lamberti, G.A., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 453–473. [Google Scholar]
- Miserendino, M.L.; Pizzolón, L.A. Macroinvertebrates of a fluvial system in Patagonia: Altitudinal zonation and functional structure. Arch. Für Hydrobiol. 2000, 150, 55–83. [Google Scholar] [CrossRef]
- Clark, K.R. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 5 May 2025).
- Samways, M.J.; Sharratt, N.J.; Simaika, J.P. Effect of alien riparian vegetation and its removal on a highly endemic river macroinvertebrate community. Biol. Invasions 2011, 13, 1305–1324. [Google Scholar] [CrossRef]
- Miserendino, M.L. Macroinvertebrate functional organization and water quality in a large arid river from Patagonia (Argentina). Ann. De Limnol.—Int. J. Limnol. 2007, 43, 133–145. [Google Scholar] [CrossRef]
- Velásquez, S.M.; Miserendino, M.L. Análisis de la materia orgánica alóctona y organización funcional de macroinvertebrados en relación con el tipo de hábitat en ríos de montaña de Patagonia. Ecol. Austral 2003, 13, 67–82. [Google Scholar]
- Pidgeon, R.W.J.; Cairns, S.C. Decomposition and colonization by invertebrates of native and exotic leaf material in a small stream in New England (Australia). Hydrobiologia 1981, 77, 113–127. [Google Scholar] [CrossRef]
- Subramanian, K.A.; Sivaramakrishnan, K.G.; Gadgil, M. Impact of riparian land use on stream insects of Kudremukh National Park, Karnataka state. India J. Insect Sci. 2005, 5, 49. [Google Scholar] [CrossRef] [PubMed]
- Fierro, P.; Bertrán, J.; Tapia, J.; Hauenstein, E.; Peña-Cortes, F.; Vergara, C.; Cerna, C.; Vargas Chacoff, L. Effects of local land-use on riparian vegetation, water quality, and the functional organization of macroinvertebrate assemblages. Sci. Total Environ. 2017, 609, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Miserendino, M.L.; Brand, C.; Di Prinzio, C.Y. Assessing urban impacts on water quality, benthic communities and fish in streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollut. 2008, 194, 91–110. [Google Scholar] [CrossRef]
- Miserendino, M.L.; Brand, C. Environmental effects of urbanization on streams and rivers in patagonia (Argentina): The use of macroinvertebrates in monitoring. Adv. Environ. Res. 2009, 6, 183–220. [Google Scholar]
- Buria, L.; Albariño, R.; Díaz Villanueva, V. Does predation by the introduced rainbow trout cascade down to detritus and algae in a forested small stream in Patagonia? Hydrobiologia 2010, 651, 161–172. [Google Scholar] [CrossRef]
- Príncipe, R.E.; Gualdoni, C.M.; Oberto, A.M.; Raffaini, G.B.; Corigliano, M.D.C. Spatial-temporal patterns of functional feeding groups in mountain streams of Córdoba, Argentina. Ecol. Austral. 2010, 20, 257–268. [Google Scholar]
- Rivera, J.A.; Penalba, O.C.; Bettolli, M.L. Inter-annual and inter-decadal variability of dry days in Argentina. Int. J. Climatol. 2013, 33, 834–842. [Google Scholar] [CrossRef]
- Fossati, O.; Dumas, P.; Archaimbault, V.; Rocabado, G.; Fernandez, H. Deriving life traits from habitat characteristics: An initial application for neotropical invertebrates. J. Rech. Oceanogr. 2003, 28, 158–162. [Google Scholar]
- Richards, C.; Haro, R.J.; Johnson, L.B.; Host, G.E. Catchment and reach-scale properties as indicators of macroinvertebrate species traits. Freshwat. Biol. 1997, 37, 219–230. [Google Scholar] [CrossRef]
- Lugthart, G.J.; Wallace, J.B. Effects of disturbance on benthic functional structure and production in mountain streams. J. N. Am. Benthol. Soc. 1992, 11, 138–164. [Google Scholar] [CrossRef]
- Magnolia Longo, S.; Hilldier Zamora, G.; Cástor Guisande, G.; John Jairo Ramírez, R. Dinámica de la comunidad de macroinvertebrados en la quebrada Potrerillos (Colombia): Respuesta a los cambios estacionales de caudal. Limnetica 2010, 29, 195–210. [Google Scholar] [CrossRef]
- Hurtado, S.I.; Calianno, M.; Adduca, S.; Easdale, M.H. Drylands becoming drier: Evidence from North Patagonia, Argentina. Reg. Environ. Change 2023, 23, 165. [Google Scholar] [CrossRef]
HW1 | LW1 | HW2 | ||||
---|---|---|---|---|---|---|
NP | IP | NP | IP | NP | IP | |
Depth | 0.50 ± 0.05 | 0.43 ± 0.04 | 0.38 ± 0.02 | 0.24 ± 0.01 | 0.26 ± 0.01 | 0.34 ± 0.05 |
pH | 7.18 ± 0.96 | 7.15 ± 0.56 | 7.14 ± 0.07 | 6.79 ± 0.42 | 7.18 ± 0.96 | 7.15 ± 0.56 |
T° | 13.45 ± 2.05 | 13.25 ± 1.06 | 11.28 ± 2.67 | 11.36 ± 0.28 | 9.57 ± 0.47 | 12.21 ± 0.01 |
Cond | 89.85 ± 1.63 | 104.10 ± 4.81 | 109.50 ± 14.85 | 125.5 ± 4.95 | 76 ± 2.83 | 112.65 ± 0.50 |
DO | 18.05 ± 2.90 | 9.05 ± 0.21 | 21.5 ± 0.95 | 8.55 ± 0.64 | 12.89 ± 0.42 | 11.01 ± 0.16 |
2018 | 2019 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HW1 | LW1 | HW2 | ||||||||||
TAXA | NP1 | NP2 | IP1 | IP2 | NP1 | NP2 | IP1 | IP2 | NP1 | NP2 | IP1 | IP2 |
Ephemeroptera | ||||||||||||
Baetidae (Sc) | 4 | 3 | 9 | 2 | 3 | 5 | 3 | 16 | 8 | 15 | ||
Leptophlebidae (Sc) | 15 | 4 | 17 | 13 | 36 | 8 | 1 | 8 | 28 | 33 | 8 | 8 |
Plecoptera | ||||||||||||
Gripopterygiidae (Sc) | 11 | 12 | 7 | 1 | 9 | 34 | 1 | 11 | 17 | 3 | ||
Notonemouridae (Sc) | 2 | 0.3 | 1 | 0.3 | 1 | 1 | 2 | |||||
Trichoptera | ||||||||||||
Ecnomidae (P) | 0.3 | 1 | 0.3 | 1 | 1 | 0.3 | 0.3 | |||||
Helicophidae (Sh) | 0.3 | 1 | ||||||||||
Hydrobiosidae (P) | 0.3 | 1 | 1 | 0.3 | 0.3 | |||||||
Hydropscychidae (CF) | 2 | 1 | 2 | 0.3 | 2 | |||||||
Hydroptilidae (Sc) | 1 | 1 | 1 | |||||||||
Leptoceridae (Sh) | 1 | 0.3 | 0.3 | 1 | 1 | 0.3 | 2 | 2 | ||||
Philorheithridae (P) | 0.3 | 1 | ||||||||||
Diptera | ||||||||||||
Athericidae (P) | 1 | 0.3 | 1 | 1 | 0.3 | |||||||
Ceratopogonidae (P) | 1 | 0.3 | 4 | 1 | 1 | 0.3 | 1 | 1 | 1 | |||
Chironomidae (CG) | 74 | 44 | 76 | 53 | 14 | 26 | 30 | 47 | 147 | 152 | 140 | 107 |
Dolichopodidae (P) | 0.3 | |||||||||||
Empididae (P) | 1 | 0.3 | ||||||||||
Simulidae (CF) | 1 | 8 | 49 | 68 | 1 | 3 | 7 | 76 | 1 | |||
Tabanidae (P) | 0.3 | 0.3 | 0.3 | |||||||||
Tipulidae (P) | 0.3 | 1 | ||||||||||
Coleoptera | ||||||||||||
Dytiscidae (P) | 0.3 | 3 | 1 | 4 | ||||||||
Elmidae (Sc) | 23 | 3 | 8 | 1 | 12 | 7 | 5 | 1 | 16 | 3 | 8 | 2 |
Scirtidae (CG) | 0.3 | 4 | ||||||||||
Annelida | ||||||||||||
Lumbriculidae (CG) | 0.3 | 2 | 2 | 6 | 2 | 4 | 1 | 0.3 | 2 | 11 | ||
Crustacea | ||||||||||||
Aeglidae (P) | 0.3 | 2 | 1 | 1 | ||||||||
Hyalellidae (CG) | 1 | 32 | 55 | 32 | 11 | 20 | 8 | |||||
Parastacidae (P) | 0.3 | 0.3 | 2 | 0.3 | ||||||||
Mollusca | ||||||||||||
Physidae (Sc) | 0.3 | 7 | 0.3 | 1 | 5 | 2 | ||||||
Sphaeriidae (Sc) | 3 | 0.3 | 1 | 6 | 1 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauad, M.; Massaferro, J.; Kamburska, L.; Boggero, A. Taxonomic and Functional Responses of Macroinvertebrates to Hydrological Changes and Invasive Plants in an NW Patagonia Riparian Corridor (Argentina). Water 2025, 17, 1840. https://doi.org/10.3390/w17131840
Mauad M, Massaferro J, Kamburska L, Boggero A. Taxonomic and Functional Responses of Macroinvertebrates to Hydrological Changes and Invasive Plants in an NW Patagonia Riparian Corridor (Argentina). Water. 2025; 17(13):1840. https://doi.org/10.3390/w17131840
Chicago/Turabian StyleMauad, Melina, Julieta Massaferro, Lyudmila Kamburska, and Angela Boggero. 2025. "Taxonomic and Functional Responses of Macroinvertebrates to Hydrological Changes and Invasive Plants in an NW Patagonia Riparian Corridor (Argentina)" Water 17, no. 13: 1840. https://doi.org/10.3390/w17131840
APA StyleMauad, M., Massaferro, J., Kamburska, L., & Boggero, A. (2025). Taxonomic and Functional Responses of Macroinvertebrates to Hydrological Changes and Invasive Plants in an NW Patagonia Riparian Corridor (Argentina). Water, 17(13), 1840. https://doi.org/10.3390/w17131840