The Hydraulic Assessment of a New Portable Rainfall Simulator Using Different Nozzle Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Description of the Rainfall Simulator
2.2. Experimental Measurements
3. Results
3.1. Testing the Characteristic Curve
3.2. Rainfall Intensity
4. Discussion
4.1. Testing the Characteristic Curve
4.2. Rainfall Intensity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meyer, L.D. Simulation of rainfall for soil erosion research. Trans. ASAE 1965, 8, 63–65. [Google Scholar] [CrossRef]
- Aksoy, H.; Unal, N.E.; Cokgor, S.; Gedikli, A.; Yoon, J.; Koca, K.; Boran Inci, S.; Eris, E. A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume. Catena 2012, 98, 63–72. [Google Scholar] [CrossRef]
- Iserloh, T.; Ries, J.B.; Arnáez, J.; Boix-Fayos, C.; Butzen, V.; Cerdà, A.; Echeverría, M.T.; Fernández-Gálvez, J.; Fister, W.; Geißler, C.; et al. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena 2013, 110, 100–112. [Google Scholar] [CrossRef]
- Lassu, T.; Seeger, M.; Peters, P.; Keesstra, S.D. The Wageningen rainfall simulator: Set-up and calibration of an indoor nozzle-type rainfall simulator for soil erosion studies. Land Degrad. Dev. 2015, 26, 604–612. [Google Scholar] [CrossRef]
- Vergni, L.; Todisco, F.; Vinci, A. Setup and calibration of the rainfall simulator of the Masse experimental station for soil erosion studies. Catena 2018, 167, 448–455. [Google Scholar] [CrossRef]
- Mhaske, S.N.; Pathak, K.; Basak, A. A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena 2019, 172, 408–420. [Google Scholar] [CrossRef]
- Fernández-Raga, M.; Rodríguez, I.; Caldevilla, P.; Búrdalo, G.; Ortiz, A.; Martínez-García, R. Optimization of a Laboratory Rainfall Simulator to Be Representative of Natural Rainfall. Water 2022, 14, 3831. [Google Scholar] [CrossRef]
- Neal, J.H. The Effect of the Degree of Slope and Rainfall Characteristics on Runoff and Soil Erosion; University of Missouri, College of Agriculture, Agricultural Experiment Station: Columbia, MO, USA, 1938. [Google Scholar]
- Wilm, H.G. The application and measurement of artificial rainfall on types FA and F infiltrometers. Eos Trans. Am. Geophys. Union 1943, 24, 480–487. [Google Scholar] [CrossRef]
- Adams, J.E.; Kirkham, D.; Nielsen, D.R. A portable rainfall-simulator infiltrometer and physical measurements of soil in place. Soil Sci. Soc. Am. J. 1957, 21, 473–477. [Google Scholar] [CrossRef]
- Hudson, N.W. The Influence of Rainfall on the Mechanics of Soil Erosion: With Particular Reference to Southern Rhodesia. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 1965. [Google Scholar]
- Bryan, R.B. A simulated rainfall test for the prediction of soil erodibility. Z. Geomorphol. 1974, 21, 138–150. [Google Scholar]
- Imeson, A.C. A simple field-portable rainfall simulator for difficult terrain. Earth Surf. Process. 1977, 2, 431–436. [Google Scholar] [CrossRef]
- De Ploey, J. Crusting and time-dependent rainwash mechanisms on loamy soil. In Soil Conservation, Problems and Prospects; Morgan, R.P.C., Ed.; Wiley: Hoboken, NJ, USA, 1981; pp. 139–154. [Google Scholar]
- Farres, P.J. The dynamics of rainsplash erosion and the role of soil aggregate stability. Catena 1987, 14, 119–130. [Google Scholar] [CrossRef]
- Roth, C.H.; Meyer, B.; Frede, H.G. A portable rainfall simulator for studying factors affecting runoff, infiltration and soil loss. Catena 1985, 12, 79–85. [Google Scholar] [CrossRef]
- Luk, S.H. Effect of antecedent soil moisture content on rainwash erosion. Catena 1985, 12, 129–139. [Google Scholar] [CrossRef]
- Kamphorst, A. A small rainfall simulator for the determination of soil erodibility. Neth. J. Agric. Sci. 1987, 35, 407–415. [Google Scholar] [CrossRef]
- Norton, L. Micromorphological study of surface seals developed under simulated rainfall. Geoderma 1987, 40, 127–140. [Google Scholar] [CrossRef]
- Calvo, A.; Gisbert, J.M.; Palau, E.; Romero, M. Un simulador de lluvia portátil de fácil construcción. In Métodos y Técnicas para la Medición en el Campo de Procesos Geomorfológicos; Sala, M., Gallart, F., Eds.; Sociedad Española de Geología: Zaragoza, Spain, 1988; Volume 1, pp. 6–15. [Google Scholar]
- Poesen, J.; Ingelmo-Sanchez, F.; Mucher, H. The hydrological response of soil surfaces to rainfall as affected by cover and position of rock fragments in the top layer. Earth Surf. Process. Landf. 1990, 15, 653–671. [Google Scholar] [CrossRef]
- Cerdà, A.; Ibáñez, S.; Calvo, A. Design and operation of a small and portable rainfall simulator for rugged terrain. Soil Technol. 1997, 11, 163–170. [Google Scholar] [CrossRef]
- Torri, D.; Regüés, D.; Pellegrini, S.; Bazzoffi, P. Within-storm soil surface dynamics and erosive effects of rainstorms. Catena 1999, 38, 131–150. [Google Scholar] [CrossRef]
- Battany, M.C.; Grismer, M.E. Development of a portable field rainfall simulator for use in hillside vineyard runoff and erosion studies. Hydrol. Process. 2000, 14, 1119–1129. [Google Scholar] [CrossRef]
- Regmi, T.P.; Thompson, A.L. Rainfall simulator for laboratory studies. Appl. Eng. Agric. 2000, 16, 641–647. [Google Scholar] [CrossRef]
- Loch, R.J.; Robotham, B.G.; Zeller, L.; Masterman, N.; Orange, D.N.; Bridge, B.J.; Sheridan, G.J.; Bourke, J.J. A multi-purpose rainfall simulator for field infiltration and erosion studies. Soil Res. 2001, 39, 599–610. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Abadía, R.; Castillo, V.; Albaladejo, J. Diseño experimental mediante lluvia simulada para el estudio de los cambios en la erosión del suelo durante la tormenta. Cuatern. Geomorfol. 2001, 15, 31–43. [Google Scholar]
- Humphry, J.B.; Daniel, T.C.; Edwards, D.R.; Sharpley, A.N. A portable rainfall simulator for plot–scale runoff studies. Appl. Eng. Agric. 2002, 18, 199–204. [Google Scholar] [CrossRef]
- Blanquies, J.; Scharff, M.; Hallock, B. The design and construction of a rainfall simulator. In Proceedings of the International Erosion Control Association (IECA), 34th Annual Conference and Expo, Las Vegas, NV, USA, 24–28 February 2003. [Google Scholar]
- Regüés, D.; Gallart, F. Seasonal patterns of runoff and erosion responses to simulated rainfall in a badland area in Mediterranean mountain conditions (Vallcebre, southeastern Pyrenees). Earth Surf. Process. Landf. 2004, 29, 755–767. [Google Scholar] [CrossRef]
- Birt, L.N.; Persyn, R.A.; Smith, P.K. Evaluation of an indoor nozzle-type rainfall simulator. Appl. Eng. Agric. 2007, 23, 283–287. [Google Scholar] [CrossRef]
- Clarke, M.A.; Walsh, R.P. A portable rainfall simulator for field assessment of splash and slopewash in remote locations. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 2052–2069. [Google Scholar] [CrossRef]
- Alves Sobrinho, T.; Gómez-Macpherson, H.; Gómez, J.A. A portable integrated rainfall and overland flow simulator. Soil Use Manag. 2008, 24, 163–170. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Regüés, D. Detachment and infiltration variations as consequence of regolith development in a Pyrenean badland system. Earth Surf. Process. Landf. 2009, 34, 824–838. [Google Scholar] [CrossRef]
- Abudi, I.; Carmi, G.; Berliner, P. Rainfall simulator for field runoff studies. J. Hydrol. 2012, 454, 76–81. [Google Scholar] [CrossRef]
- Ries, J.B.; Iserloh, T.; Seeger, M.; Gabriels, D. Rainfall simulations-constraints, needs and challenges for a future use in soil erosion research. Z. Geomorphol. Suppl. 2013, 57, 1–10. [Google Scholar] [CrossRef]
- Rončević, V.; Živanović, N.; van Boxel, J.H.; Iserloh, T.; Štrbac, S. Dripping rainfall simulators for soil research—Performance review. Water 2023, 15, 1314. [Google Scholar] [CrossRef]
- Eijkelkamp. Rainfall Simulator—Operating Instructions, M-0906E; Eijkelkamp: Giesbeek, The Netherlands, 2022; Available online: https://www.royaleijkelkamp.com/media/1awdmlno/m-0906e-rainfall-simulator.pdf (accessed on 10 April 2025).
- Carollo, F.G.; Caruso, R.; Ferro, V.; Serio, M.A. Characterizing the Kamphorst rainfall simulator for soil erosion investigations. J. Hydrol. 2024, 643, 132025. [Google Scholar] [CrossRef]
- Serio, M.A.; Carollo, F.G.; Caruso, R.; Ferro, V. Guidelines for the Energetic Characterization of a Portable Drip-Type Rainfall Simulator for Soil Erosion Research. Water 2024, 16, 2100. [Google Scholar] [CrossRef]
- Bowyer-Bower, T.A.S.; Burt, T.P. Rainfall simulators for investigating soil response to rainfall. Soil Technol. 1989, 2, 1–16. [Google Scholar] [CrossRef]
- Naves, J.; Anta, J.; Suárez, J.; Puertas, J. Development and calibration of a new dripper-based rainfall simulator for large-scale sediment wash-off studies. Water 2020, 12, 152. [Google Scholar] [CrossRef]
- Cottenot, L.; Courtemanche, P.; Nouhou-Bako, A.; Darboux, F. A rainfall simulator using porous pipes as drop former. Catena 2021, 200, 105101. [Google Scholar] [CrossRef]
- Corona, R.; Wilson, T.; D’Adderio, L.P.; Porcù, F.; Montaldo, N.; Albertson, J. On the estimation of surface runoff through a new plot scale rainfall simulator in Sardinia, Italy. Procedia Environ. Sci. 2013, 19, 875–884. [Google Scholar] [CrossRef]
- Lascelles, B.; Favis-Mortlock, D.T.; Parsons, A.J.; Guerra, A.J.T. Spatial and temporal variation in two rainfall simulators: Implications for spatially explicit rainfall simulation experiments. Earth Surf. Process. Landf. 2000, 25, 709–721. [Google Scholar] [CrossRef]
- Boulal, H.; Gómez-Macpherson, H.; Gómez, J.A.; Mateos, L. Effect of soil management and traffic on soil erosion in irrigated annual crops. Soil Tillage Res. 2011, 115, 62–70. [Google Scholar] [CrossRef]
- Christiansen, J.E. Irrigation by Sprinkling; University of California: Berkeley, CA, USA, 1942; Volume 4. [Google Scholar]
- Karmeli, D. Estimating sprinkler distribution patterns using linear regression. Trans. ASAE 1978, 21, 682–0686. [Google Scholar] [CrossRef]
- Esteves, M.; Planchon, O.; Lapetite, J.M.; Silvera, N.; Cadet, P. The ‘EMIRE’ large rainfall simulator: Design and field testing. Earth Surf. Process. Landf. 2000, 25, 681–690. [Google Scholar] [CrossRef]
- Costa, A.R.D.S.; Alvarenga, L.A.; Thebaldi, M.S.; Melo, P.A.; Colombo, A.; Isidoro, J.M.G.P. Portable rainfall simulator: Evaluation and suitability of plot geometry to improve rainfall uniformity. Eng. Sanit. Ambient. 2023, 28, e20220198. [Google Scholar] [CrossRef]
- Green, D.; Pattison, I. Christiansen uniformity revisited: Re-thinking uniformity assessment in rainfall simulator studies. Catena 2022, 217, 106424. [Google Scholar] [CrossRef]
- ASABE. Design and Installation of Micro-Irrigation Systems; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1994. [Google Scholar]
- Iserloh, T.; Fister, W.; Seeger, M.; Willger, H.; Ries, J.B. A small portable rainfall simulator for reproducible experiments on soil erosion. Soil Tillage Res. 2012, 124, 131–137. [Google Scholar] [CrossRef]
Spray Angle and Nozzle Model | Type | Bore Width (B) [mm] | Flow Rate (Q) [L/min] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Pressure (P) [bar] | ||||||||||
0.5 | 1 | 2 | 3 | 5 | 7 | 10 | Maximum Diameter of the Circular Wetted Area (m) | |||
45°_490683 | High Q | 2.55 | 2.87 | 3.79 | 5.00 | 5.88 | 7.21 | 8.25 | 9.52 | 1.35 |
60°_490684 | High Q | 2.60 | 2.87 | 3.79 | 5.00 | 5.88 | 7.21 | 8.25 | 9.52 | 1.88 |
90°_490686 | High Q | 2.70 | 2.87 | 3.79 | 5.00 | 5.88 | 7.21 | 8.25 | 9.52 | 3.26 |
120°_490688 | High Q | 2.75 | 2.87 | 3.79 | 5.00 | 5.88 | 7.21 | 8.25 | 9.52 | 5.65 |
120°_490608 | Low Q | 2.10 | 1.81 | 2.39 | 3.15 | 3.70 | 4.54 | 5.20 | 6.00 | 5.65 |
Manufacturer Characteristic Curves | Calibration on Experimental Data | ||||
---|---|---|---|---|---|
Nozzle Type | High Q | Low Q | High Q | Low Q | |
Spray angle | 45°, 60°, 90°, 120° | 120° | 45° | 60°, 90°, 120° | 120° |
MRE | −1.68% | −5.06% | 0.80% | 0.14% | 0.30% |
MAE | 5.59% | 5.39% | 3.89% | 1.84% | 4.29% |
Data with AE ≤ 10% | 86.36% | 86.36% | 90.91% | 100.00% | 100.00% |
Spray Angle and Nozzle Model | Nozzle Type | Nozzle n. | P (bar) | Ia (mm/h) | CU (%) |
---|---|---|---|---|---|
120°_490608 | Low Q | n1 | 0.26 | 68.12 | 73.50% |
0.54 | 68.90 | 90.90% | |||
n2 | 0.25 | 44.65 | 88.10% | ||
0.51 | 51.60 | 95.60% | |||
120°_490688 | High Q | n1 | 0.26 | 64.60 | 92.10% |
0.52 | 60.59 | 96.20% | |||
n2 | 0.26 | 55.33 | 97.10% | ||
0.53 | 55.23 | 97.20% | |||
90°_490686 | High Q | n1 | 0.25 | 130.59 | 93.90% |
0.51 | 85.41 | 95.60% | |||
n2 | 0.25 | 132.55 | 91.00% | ||
0.52 | 83.13 | 95.40% | |||
60°_490684 | High Q | n1 | 1.02 | 327.43 | 66.50% |
1.54 | 321.41 | 72.40% | |||
n2 | 1.02 | 164.20 | 91.80% | ||
1.52 | 176.27 | 92.20% | |||
45°_490683 | High Q | n1 | 1.00 | 186.94 | 91.50% |
1.50 | 246.95 | 91.70% | |||
n2 | 1.03 | 209.05 | 91.40% | ||
1.50 | 253.10 | 90.20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serio, M.A.; Caruso, R.; Carollo, F.G.; Bagarello, V.; Ferro, V.; Nicosia, A. The Hydraulic Assessment of a New Portable Rainfall Simulator Using Different Nozzle Models. Water 2025, 17, 1765. https://doi.org/10.3390/w17121765
Serio MA, Caruso R, Carollo FG, Bagarello V, Ferro V, Nicosia A. The Hydraulic Assessment of a New Portable Rainfall Simulator Using Different Nozzle Models. Water. 2025; 17(12):1765. https://doi.org/10.3390/w17121765
Chicago/Turabian StyleSerio, Maria Angela, Roberto Caruso, Francesco Giuseppe Carollo, Vincenzo Bagarello, Vito Ferro, and Alessio Nicosia. 2025. "The Hydraulic Assessment of a New Portable Rainfall Simulator Using Different Nozzle Models" Water 17, no. 12: 1765. https://doi.org/10.3390/w17121765
APA StyleSerio, M. A., Caruso, R., Carollo, F. G., Bagarello, V., Ferro, V., & Nicosia, A. (2025). The Hydraulic Assessment of a New Portable Rainfall Simulator Using Different Nozzle Models. Water, 17(12), 1765. https://doi.org/10.3390/w17121765