Bending–Torsional Coupling Vibration of Hydro-Turbine Generator Unit Considering Gyroscopic Effect Under Multiple Excitations
Abstract
:1. Introduction
2. Mathematical Modeling of Bending–Torsional Coupled Vibration for the HTGU
2.1. Gyroscopic Moment
2.2. Euler Angles
2.3. The HTGU Bending–Torsional Coupled Vibration Model Considering Gyroscopic Effects
- (1)
- Unbalanced magnetic pull
- (2)
- Oil film force
- (3)
- Hydraulic excitation
- (4)
- Electromagnetic torque
- (5)
- Couple moment of hydraulic excitation
3. Numerical Analysis
3.1. The Impact of the Gyroscopic Effect on the Bending–Torsional Coupled Vibration of the HTGU with Hydraulic Excitation
3.2. Influence of Gyroscopic Effect on Bending–Torsional Coupling Vibration of the HTGU Without Hydraulic Excitation
3.3. Impact of Rotational Dynamics on Coupled Bending–Torsion Vibrations in Hydro-Turbine Generators Across Operational Regimes
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
List of symbols | |
c1 | Damping coefficient of generator rotor |
c2 | Damping coefficient of turbine runner |
crθ | Structural damping coefficient of inclined vibration |
ct | Structural damping coefficient of torsional vibration |
Jd | Diameter moment of inertia |
Jp1 | Polar moment of inertia of generator rotor |
Jp2 | Polar moment of inertia of turbine runner |
R | Radius of generator rotor |
r1 | Distance from runner inlet to runner axis |
r2 | Distance from runner outlet to runner axis |
L | Length of generator rotor |
References
- Sun, W.; Wang, B.; Ma, Z.; Zhang, H. Insights into the nonlinear dynamic characteristics of a water turbine generator set considering the coupled effects of a fractional-order broadband foundation. J. Sound Vib. 2024, 573, 118190. [Google Scholar] [CrossRef]
- Chen, W.; Wang, S.; Chen, H.; Zhang, W.; Ma, J.; Pan, J. Analysis of Shafting System Vibration Characteristics for Mixed-Flow hydropower Units Considering Sand Wear on Turbine Blades. J. Appl. Sci. 2024, 14, 4806. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Z.; Wang, X.; Wu, Q.; Zhang, L. Transient vibration of shafting in coupled hydraulic-mechanical-electrical-structural system for hydropower station during start-up process. Appl. Math. Model. 2023, 124, 860–880. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.H. Computational Model for Investigating the Influence of Unbalanced Magnetic Pull on the Radial Vibration of Large Hydro-Turbine Generators. J. Vib. Acoust. 2012, 134, 051013. [Google Scholar] [CrossRef]
- Wang, B.; Xue, J.Y.; Wu, F.J.; Zhu, D.L. Finite time takagi-sugeno fuzzy control for hydro-turbine governing system. J. Vib. Control 2018, 24, 1001–1010. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, C.C. A new model for analyzing the vibration behaviors of rotor-bearing system. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105130. [Google Scholar] [CrossRef]
- Nie, L.; Wang, X.; Zhang, J.; Ma, Z.; Zhang, L. Dynamic characteristics analysis and vibration control of coupled bending-torsional system for axial flow hydraulic generating set. Chaos Solitons Fractals 2024, 187, 115401. [Google Scholar] [CrossRef]
- Shi, Y.; Shen, J.; Guo, W.; Li, C.; Zheng, Y.; Zhao, Z.; Zhou, J.; Zhang, Y. The nonlinear dynamic characteristics analysis and vibration reduction control of the shafting system of a hydropower unit. Int. J. Non-Linear Mech. 2022, 146, 104166. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Z.; Wang, X.; Zhang, L.; Wu, Q.; Li, M. Vibration control on coupled unit-plant structure of pumped storage power station during sudden load-up process. Mech. Syst. Signal Process. 2024, 212, 111333. [Google Scholar] [CrossRef]
- Zhu, D.; Tao, R.; Xiao, R.F.; Pan, L.T. Solving the Runner Blade Crack Problem for a Francis Hydro-Turbine Operating under Condition-Complexity. Renew. Energy 2020, 149, 298–320. [Google Scholar] [CrossRef]
- Song, Z.Q.; Liu, Y.H.; Guo, P.C.; Feng, J.J. Torsional Vibration Analysis of Hydro-Generator Set Considered Electromagnetic and Hydraulic Vibration Resources Coupling. Int. J. Precis. Eng. Manuf. 2018, 19, 939–945. [Google Scholar] [CrossRef]
- Perez-Loya, J.J.; Abrahamsson, C.J.D.; Lundin, U. Electromagnetic Losses in Synchronous Machines During Active Compensation of Unbalanced Magnetic Pull. IEEE Trans. Ind. Electron. 2018, 66, 124–131. [Google Scholar] [CrossRef]
- Wu, X.Y.; Peng, Z.K.; Ren, J.S.; Cheng, C.M.; Zhanga, W.; Wang, D. Rub-Impact Fault Diagnosis of Rotating Machinery Based on 1-D Convolutional Neural Networks. IEEE Sens. J. 2020, 20, 8349–8363. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, X.J.; Peng, Z.K.; Zhang, W.M.; Meng, G. Vibration signal analysis using parameterized time-frequency method for features extraction of varying-speed rotary machinery. J. Sound Vib. 2015, 335, 350–366. [Google Scholar] [CrossRef]
- Xu, B.B.; Chen, D.Y.; Zhang, H.; Li, C.; Zhou, J.Z. Shaft mis-alignment induced vibration of a hydraulic turbine generating system considering parametric uncertainties. J. Sound Vib. 2018, 435, 74–90. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.H.; Lai, X.D. Dynamic model for hydro-turbine generator units based on a database method for guide bearings. Shock Vib. 2013, 20, 411–421. [Google Scholar] [CrossRef]
- Zhou, W.; Ma, J.; Ma, Z.; Yu, W.; Su, H.; Gao, B. Fluid–structure interaction on the rotor-dynamic characteristics of a low-specific-speed centrifugal pump considering multi-scale fluid excitation effects. Phys. Fluids 2024, 36, 117157. [Google Scholar] [CrossRef]
- Shi, Y.S.; Zhou, J.Z.; Lai, X.J.; Xu, Y.H.; Guo, W.C.; Liu, B.N. Stability and sensitivity analysis of the bending-torsional coupled vibration with the arcuate whirl of hydro-turbine generator unit. Mech. Syst. Signal Process. 2020, 149, 107306. [Google Scholar] [CrossRef]
- Sun, W.; Guo, Z. Mathematical modeling and nonlinear vibration analysis of a coupled hydro-generator shaft-foundation system. Commun. Nonlinear Sci. Numer. Simul. 2021, 98, 105776. [Google Scholar] [CrossRef]
- Hua, C.L.; Cao, G.H.; Rao, Z.S.; Ta, N.; Zhu, Z.C. Coupled bending and torsional vibration of a rotor system with nonlinear friction. J. Mech. Sci. Technol. 2017, 31, 2679–2689. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Zhu, P.F.; Wang, J.P.; Zhu, H.Q. Stability Control for a Centripetal Force Type-Magnetic Bearing-Rotor System Based on Golden Frequency Section Point. IEEE Trans. Ind. Electron. 2021, 68, 12482–12492. [Google Scholar] [CrossRef]
- Han, B.C.; Chen, Y.L.; Li, M.X.; Zheng, S.Q.; Zhang, X. Stable Control of Nutation and Precession for the Radial Four-Degree-of-Freedom AMB-Rotor System Considering Strong Gyroscopic Effects. IEEE Trans. Ind. Electron. 2021, 68, 11369–11378. [Google Scholar] [CrossRef]
- Zhao, J.S.; Liu, W.T.; Zhang, Y.; Feng, Z.J. Effects of gyroscopic moment on the damage of a tapered roller bearing. Mech. Mach. Theory 2013, 69, 185–199. [Google Scholar] [CrossRef]
- Jalili, M.M.; Hesabi, J.; Abootorabi, M.M. Simulation of forced vibration in milling process considering gyroscopic moment and rotary inertia. Int. J. Adv. Manuf. Technol. 2016, 89, 2821–2836. [Google Scholar] [CrossRef]
- She, H.X.; Li, C.F.; Tang, Q.S.; Wen, B.C. Influence mechanism of disk position and flexibility on natural frequencies and critical speeds of a shaft-disk-blade unit. J. Sound Vib. 2020, 469, 115156. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, L.X.; Zhang, C.L.; Qian, J.; Guo, Y.K. Large disturbance transient model for shafting lateral vibration of Hydro Turbine Generation sets. China J. Solid Mech. 2013, 33, 137–142. (In Chinese) [Google Scholar]
- Zeng, Y.; Zhang, L.X.; Guo, Y.K.; Qian, J.; Zhang, C.L. The generalized Hamiltonian model for the shafting transient analysis of the hydro turbine generating sets. Nonlinear Dyn. 2014, 76, 1921–1933. [Google Scholar] [CrossRef]
- Xu, B.B.; Chen, D.Y.; Tolo, S.; Patelli, E.; Jiang, Y.L. Model validation and stochastic stability of a hydro-turbine governing system under hydraulic excitations. Int. J. Electr. Power Energy Syst. 2018, 95, 156–165. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, Z.; Song, B. Dynamic characteristics of a rub-impact rotor-bearing system for hydraulic generating set under unbalanced magnetic pull. Arch. Appl. Mech. 2013, 83, 817–830. [Google Scholar] [CrossRef]
Parameters | Values | Units | Parameters | Values | Units |
---|---|---|---|---|---|
m1 | 4.5 × 105 | kg | k1 | 8.5 × 107 | N/m |
m2 | 2.5 × 105 | kg | k2 | 6.5 × 107 | N/m |
c1 | 4.5 × 105 | N·s/m | k3 | 3.5 × 107 | N/m |
c2 | 3.5 × 105 | N·s/m | Kt | 7.5 × 106 | N/m |
ct | 2.5 × 105 | N·s/m | crθ | 2.5 × 104 | N·s/m |
e1 | 0.5 × 10−3 | m | 3.5 × 107 | N/m | |
e2 | 0.5 × 10−3 | m | 4.5 × 107 | N/m | |
Jd | 4.5 × 107 | kg·m2 | v1 | 12 | m/s |
Jp1 | 6.5 × 107 | kg·m2 | v2 | 11 | m/s |
Jp2 | 1.5 × 106 | kg·m2 | R | 0.7 | m |
α | 11.43 | ° | r | 1.6 | m |
β | 12.47 | ° | r1 | 1.2 | m |
Q | 960 | m3/s | r2 | 0.8 | m |
L | 0.4 | m | 2 × 10−3 | m | |
A | 8.04 | m2 | ku | 1.2 | p.u |
1 × 103 | kg/m3 |
Directions | Scenarios | Vibration Amplitude (m) | |
---|---|---|---|
Without Hydraulic Excitation | With Hydraulic Excitation | ||
x1 | With gyroscopic effect | 1.80 × 10−4 | 1.88 × 10−4 |
Without gyroscopic effect | 1.72 × 10−4 | 1.47 × 10−4 | |
y1 | With gyroscopic effect | 2.25 × 10−4 | 2.52 × 10−4 |
Without gyroscopic effect | 2.15 × 10−4 | 2.12 × 10−4 | |
x2 | With gyroscopic effect | 1.11 × 10−4 | 1.08 × 10−4 |
Without gyroscopic effect | 1.07 × 10−4 | 9.46 × 10−5 | |
y2 | With gyroscopic effect | 1.19 × 10−4 | 1.08 × 10−4 |
Without gyroscopic effect | 1.07 × 10−4 | 1.56 × 10−4 |
Operating Condition | Flow Rate Q | Load Current ij | Field Current Frm, Fsm |
---|---|---|---|
1 | 960 | 1000 | 0.005 |
2 | 720 | 750 | 0.00375 |
3 | 480 | 500 | 0.0025 |
4 | 240 | 250 | 0.00125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Z.; Li, J.; Ma, Y.; Sun, X.; Si, H.; Zhao, P.; Li, X.; Guan, S.; Peng, B.; Xu, N.; et al. Bending–Torsional Coupling Vibration of Hydro-Turbine Generator Unit Considering Gyroscopic Effect Under Multiple Excitations. Water 2025, 17, 1764. https://doi.org/10.3390/w17121764
Bai Z, Li J, Ma Y, Sun X, Si H, Zhao P, Li X, Guan S, Peng B, Xu N, et al. Bending–Torsional Coupling Vibration of Hydro-Turbine Generator Unit Considering Gyroscopic Effect Under Multiple Excitations. Water. 2025; 17(12):1764. https://doi.org/10.3390/w17121764
Chicago/Turabian StyleBai, Zekai, Jianling Li, Yunzhe Ma, Xianan Sun, Hansong Si, Pengchong Zhao, Xianghua Li, Sumin Guan, Bing Peng, Ning Xu, and et al. 2025. "Bending–Torsional Coupling Vibration of Hydro-Turbine Generator Unit Considering Gyroscopic Effect Under Multiple Excitations" Water 17, no. 12: 1764. https://doi.org/10.3390/w17121764
APA StyleBai, Z., Li, J., Ma, Y., Sun, X., Si, H., Zhao, P., Li, X., Guan, S., Peng, B., Xu, N., Zhao, Z., Song, C., Yang, Y., & Chen, D. (2025). Bending–Torsional Coupling Vibration of Hydro-Turbine Generator Unit Considering Gyroscopic Effect Under Multiple Excitations. Water, 17(12), 1764. https://doi.org/10.3390/w17121764