Effects of Ridge Planting on the Distribution of Soil Water-Salt-Nitrogen, Crop Growth, and Water Use Efficiency of Processing Tomatoes Under Different Irrigation Amounts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurements
2.4. Actual Evapotranspiration (ETa) and WUE
2.5. Data Analysis
3. Results
3.1. Dynamics of Soil Water Content, Salt, and Nitrogen
3.2. Growth Characteristics
3.3. Crop Yield and WUE
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.H.; Liu, H.; Gong, X.W.; Li, S.; Pang, J.; Chen, Z.F.; Sun, J.S. Optimizing irrigation and nitrogen management strategy to trade off yield, crop water productivity, nitrogen use efficiency and fruit quality of greenhouse grown tomato. Agric. Water Manag. 2021, 245, 106570. [Google Scholar] [CrossRef]
- Liu, E.; Zhou, J.; Yang, X.; Jin, T.; Zhao, B.Q.; Li, L.L.; Wen, Y.C.; Soldatova, E.; Zamanian, K.; Gopalakrishnan, S.; et al. Long-term organic fertilizer-induced carbonate neoformation increases carbon sequestration in soil. Environ. Chem. Lett. 2023, 21, 663–671. [Google Scholar] [CrossRef]
- Rajanna, G.A.; Dass, A.; Singh, V.K.; Choudhary, A.K.; Paramesh, V.; Babu, S.; Upadhyay, P.K.; Sannagoudar, M.S.; Ajay, B.C.; Viswanatha Reddy, K. Energy and carbon budgeting in a soybean—Wheat system in different tillage, irrigation and fertilizer management practices in South-Asian semi-arid agroecology. Eur. J. Agron. 2023, 148, 126877. [Google Scholar] [CrossRef]
- Ghannem, A.; Ben Aissa, I.; Majdoub, R. Effects of regulated deficit irrigation applied at different growth stages of greenhouse grown tomato on substrate moisture, yield, fruit quality, and physiological traits. Environ. Sci. Pollut. Res. 2021, 28, 46553–46564. [Google Scholar] [CrossRef]
- Nangare, D.D.; Singh, Y.; Kumar, P.S.; Minhas, P.S. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Takacs, S.; Pek, Z.; Csanyi, D.; Daood, H.G.; Szuvandzsiev, P.; Palotas, G.; Helyes, L. Influence of water stress levels on the yield and lycopene content of tomato. Water 2020, 12, 2165. [Google Scholar] [CrossRef]
- Lu, J.; Shao, G.C.; Cui, J.T.; Wang, X.J.; Keabetswe, L. Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation: A meta-analysis. Agric. Water Manag. 2019, 222, 301–312. [Google Scholar] [CrossRef]
- Cui, J.T.; Shao, G.C.; Lu, J.; Keabetswe, L.; Hoogenboom, G. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. Agric. 2020, 77, 9. [Google Scholar] [CrossRef]
- Patanè, C.; Corinzia, S.A.; Testa, G.; Scordia, D.; Cosentino, S.L. Physiological and Agronomic Responses of Processing Tomatoes to Deficit Irrigation at Critical Stages in a Semi-Arid Environment. Agronomy 2020, 10, 800. [Google Scholar] [CrossRef]
- Wu, Y.; Yan, S.C.; Fan, J.L.; Zhang, F.C.; Xiang, Y.Z.; Zheng, J.; Guo, J.J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Zhang, H.M.; Xiong, Y.W.; Huang, G.H.; Xu, X.; Huang, Q.Z. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agric. Water Manag. 2017, 179, 205–214. [Google Scholar] [CrossRef]
- Wu, Z.S.; Li, Y.; Wang, R.; Xu, X.; Ren, D.Y.; Huang, Q.Z.; Xiong, Y.W.; Huang, G.H. Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method. Agric. Water Manag. 2023, 278, 108157. [Google Scholar] [CrossRef]
- Roșca, M.; Mihalache, G.; Stoleru, V. Tomato responses to salinity stress: From morphological traits to genetic changes. Front. Plant Sci. 2023, 14, 1118383. [Google Scholar] [CrossRef] [PubMed]
- Zahra, N.; Raza, Z.A.; Mahmood, S. Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes. Braz. Arch. Biol. Technol. 2020, 63, e20200072. [Google Scholar] [CrossRef]
- Li, J.G.; Chen, J.; He, P.R.; Chen, D.; Dai, X.P.; Jin, Q.; Su, X.Y. The optimal irrigation water salinity and salt component for high-yield and good-quality of tomato in Ningxia. Agric. Water Manag. 2022, 274, 107940. [Google Scholar] [CrossRef]
- Wu, Z.Q.; Fan, Y.Q.; Qiu, Y.; Hao, X.M.; Li, S.E.; Kang, S.Z. Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China. Agric. Water Manag. 2022, 270, 107736. [Google Scholar] [CrossRef]
- Achankeng, E.; Cornelis, W. Conservation tillage effects on European crop yields: A meta-analysis. Field Crops Res. 2023, 298, 108967. [Google Scholar] [CrossRef]
- He, C.; Niu, J.R.; Xu, C.T.; Han, S.W.; Bai, W.; Song, Q.L.; Dang, Y.P.; Zhang, H.L. Effect of conservation tillage on crop yield and soil organic carbon in Northeast China: A meta-analysis. Soil Use Manag. 2022, 38, 1146–1161. [Google Scholar] [CrossRef]
- Araya, T.; Gebremedhin, A.; Baudron, F.; Hailemariam, M.; Birhane, E.; Nyssen, J.; Govaerts, B.; Cornelis, W. Influence of 9 years of permanent raised beds and contour furrowing on soil health in conservation agriculture based systems in Tigray region, Ethiopia. Land Degrad. Dev. 2021, 32, 1525–1539. [Google Scholar] [CrossRef]
- Ren, B.; Hu, J.; Liu, P.; Zhao, B.; Zhang, J. Responses of nitrogen efficiency and antioxidant system of summer maize to waterlogging stress under different tillage. Peer J. 2021, 9, e11834. [Google Scholar] [CrossRef]
- Rajanna, G.A.; Dass, A.; Suman, A.; Babu, S.; Venkatesh, P.; Singh, V.K.; Upadhyay, P.K.; Sudhishri, S. Co-implementation of tillage, irrigation, and fertilizers in soybean: Impact on crop productivity, soil moisture, and soil microbial dynamics. Field Crops Res. 2022, 288, 108672. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhang, Y.; Zhao, D.H.; Liu, S.J.; Wen, X.X.; Han, J.; Liao, Y.C. Quantifying the impacts of agricultural management practices on the water use efficiency for sustainable production in the Loess Plateau region: A meta-analysis. Field Crops Res. 2023, 291, 108787. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Zhang, K.P.; Liao, P.; Xu, Q. Effect of agricultural management practices on rice yield and greenhouse gas emissions in the rice-wheat rotation system in China. Sci. Total Environ. 2024, 916, 170307. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.L.; Zhou, Y.D.; Ye, X.; Liu, E.K.; Sun, S.K.; Ren, X.L.; Jia, Z.K.; Wei, T.; Zhang, P. Continuous ridge-furrow film mulching enhances maize root growth and crop yield by improving soil aggregates characteristics in a semiarid area of China: An eight-year field experiment. Plant Soil 2024, 499, 173–191. [Google Scholar] [CrossRef]
- Li, C.J.; Xiong, Y.W.; Cui, Z.; Huang, Q.Z.; Xu, X.; Han, W.G.; Huang, G.H. Effect of irrigation and fertilization regimes on grain yield, water and nitrogen productivity of mulching cultivated maize (Zea mays L.) in the Hetao Irrigation District of China. Agric. Water Manag. 2020, 232, 106065. [Google Scholar] [CrossRef]
- Ren, D.Y.; Xu, X.; Hao, Y.Y.; Huang, G.H. Modeling and assessing field irrigation water use in a canal system of Hetao, upper Yellow River basin: Application to maize, sunflower and watermelon. J. Hydrol. 2016, 532, 122–139. [Google Scholar] [CrossRef]
- Wang, X.K.; Yun, J.; Shi, P.; Li, Z.B.; Li, P.; Xing, Y.Y. Root growth, fruit yield and water use efficiency of greenhouse grown tomato under different irrigation regimes and nitrogen levels. J. Plant Growth Regul. 2019, 38, 400–415. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Zhang, T.; Jiang, W.T.; Li, P.; Shi, P.; Xu, G.; Cheng, S.D.; Cheng, Y.T.; Fan, Z.; Wang, X.K. Effects of irrigation and fertilization on different potato varieties growth, yield and resources use efficiency in the Northwest China. Agric. Water Manag. 2022, 261, 107351. [Google Scholar] [CrossRef]
- Zhai, L.C.; Wang, Z.B.; Zhai, Y.C.; Zhang, L.H.; Zheng, M.J.; Yao, H.P.; Lv, L.H.; Shen, H.P.; Zhang, J.T.; Yao, Y.R.; et al. Partial substitution of synthetic fertilizer by organic fertilizer benefits grain yield, water use efficiency, and economic return of summer maize. Soil Tillage Res. 2022, 217, 105287. [Google Scholar] [CrossRef]
- Qin, X.L.; Li, Y.Z.; Han, Y.L.; Hu, Y.C.; Li, Y.J.; Wen, X.X.; Liao, Y.C.; Siddique, K.H.M. Ridge-furrow mulching with black plastic film improves maize yield more than white plastic film in dry areas with adequate accumulated temperature. Agri. For. Meteorol. 2018, 262, 206–214. [Google Scholar] [CrossRef]
- Zhang, G.X.; Mo, F.; Shah, F.; Meng, W.H.; Liao, Y.C.; Han, J. Ridge-furrow configuration significantly improves soil water availability, crop water use efficiency, and grain yield in dryland agroecosystems of the Loess Plateau. Agric. Water Manag. 2021, 245, 106657. [Google Scholar] [CrossRef]
- Wang, N.J.; Chen, H.X.; Ding, D.Y.; Zhang, T.B.; Li, C.; Luo, X.Q.; Chu, X.S.; Feng, H.; Wei, Y.S.; Siddique, K.H.M. Plastic film mulching affects field water balance components, grain yield, and water productivity of rainfed maize in the Loess Plateau, China: A synthetic analysis of multi-site observations. Agric. Water Manag. 2022, 266, 107570. [Google Scholar] [CrossRef]
- Liebhard, G.; Klik, A.; Neugschwandtner, R.W.; Nolz, R. Effects of tillage systems on soil water distribution, crop development, and evaporation and transpiration rates of soybean. Agric. Water Manag. 2022, 269, 107719. [Google Scholar] [CrossRef]
- Wang, Q.; Song, X.Y.; Li, F.C.; Hu, G.R.; Liu, Q.L.; Zhang, E.H.; Wang, H.L.; Davies, R. Optimum ridge-furrow ratio and suitable ridge-mulching material for Alfalfa production in rainwater harvesting in semi-arid regions of China. Field Crops Res. 2015, 180, 186–196. [Google Scholar] [CrossRef]
- Lv, S.Q.; Li, J.; Yang, Z.Y.; Yang, T.; Li, H.T.; Wang, X.F.; Peng, Y.; Zhou, C.J.; Wang, L.Q.; Abdo, A.I. The field mulching could improve sustainability of spring maize production on the Loess Plateau. Agric. Water Manag. 2023, 279, 108156. [Google Scholar] [CrossRef]
- Krause, U.; Koch, H.J.; Maerlaender, B. Soil properties effecting yield formation in sugar beet under ridge and flat cultivation. Eur. J. Agron. 2009, 31, 20–28. [Google Scholar] [CrossRef]
- Duan, C.X.; Chen, G.J.; Hu, Y.J.; Wu, S.F.; Feng, H.; Dong, Q.G. Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions. Agric. Water Manag. 2021, 245, 14. [Google Scholar] [CrossRef]
- Liu, P.Z.; Zhang, T.; Zhang, F.Y.; Ren, X.L.; Chen, X.L.; Zhao, X.N. Ridge and furrow configuration improved grain yield by optimizing the soil hydrothermal environment and maize canopy traits in Northwest China. Plant Soil 2024, 499, 23–36. [Google Scholar] [CrossRef]
- Wu, G.; Yang, S.; Luan, C.S.; Wu, Q.; Lin, L.L.; Li, X.X.; Che, Z.; Zhou, D.B.; Dong, Z.R.; Song, H. Partial organic substitution for synthetic fertilizer improves soil fertility and crop yields while mitigating N2O emissions in wheat-maize rotation system. Eur. J. Agron. 2024, 154, 127077. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Bååth, E.; Reischke, S.; Salinas, N.; Meir, P. Adaptation of soil microbial growth to temperature: Using a tropical elevation gradient to predict future changes. Glob. Change Biol. 2019, 25, 827–838. [Google Scholar] [CrossRef]
Depths (cm) | Clay (%) | Silt (%) | Sand (%) | Bulk Density (g/cm3) | Soil Organic Matter (g/kg) |
---|---|---|---|---|---|
0–10 | 1.87 | 51.53 | 46.60 | 1.49 | 8.80 |
10–20 | 1.86 | 47.28 | 50.86 | 1.53 | 7.30 |
20–40 | 1.88 | 75.81 | 22.31 | 1.68 | 9.60 |
40–60 | 1.88 | 47.82 | 50.30 | 1.61 | 5.40 |
Treatments | Tillage | Irrigation Amounts in 2022 (mm) | Irrigation Amounts in 2023 (mm) | ||||
---|---|---|---|---|---|---|---|
22 May 2022 (DAT = 1) | 17 July 2022 (DAT = 57) | 1 August 2022 (DAT = 72) | 24 May 2023 (DAT = 1) | 10 July 2023 (DAT = 48) | 1 August 2023 (DAT = 70) | ||
T1W1 | Flat planting | 50 | 32.8 | 32.8 | 50 | 22 | 22 |
T1W2 | 50 | 26.3 | 26.3 | 50 | 17.6 | 17.6 | |
T1W3 | 50 | 19.7 | 19.7 | 50 | 13.2 | 13.2 | |
T2W1 | Ridge planting | 50 | 32.8 | 32.8 | 50 | 22 | 22 |
T2W2 | 50 | 26.3 | 26.3 | 50 | 17.6 | 17.6 | |
T2W3 | 50 | 19.7 | 19.7 | 50 | 13.2 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, R.; Tan, J.; Huo, Z.; Huang, G. Effects of Ridge Planting on the Distribution of Soil Water-Salt-Nitrogen, Crop Growth, and Water Use Efficiency of Processing Tomatoes Under Different Irrigation Amounts. Water 2025, 17, 1738. https://doi.org/10.3390/w17121738
Zheng R, Tan J, Huo Z, Huang G. Effects of Ridge Planting on the Distribution of Soil Water-Salt-Nitrogen, Crop Growth, and Water Use Efficiency of Processing Tomatoes Under Different Irrigation Amounts. Water. 2025; 17(12):1738. https://doi.org/10.3390/w17121738
Chicago/Turabian StyleZheng, Ruyue, Junwei Tan, Zailin Huo, and Guanhua Huang. 2025. "Effects of Ridge Planting on the Distribution of Soil Water-Salt-Nitrogen, Crop Growth, and Water Use Efficiency of Processing Tomatoes Under Different Irrigation Amounts" Water 17, no. 12: 1738. https://doi.org/10.3390/w17121738
APA StyleZheng, R., Tan, J., Huo, Z., & Huang, G. (2025). Effects of Ridge Planting on the Distribution of Soil Water-Salt-Nitrogen, Crop Growth, and Water Use Efficiency of Processing Tomatoes Under Different Irrigation Amounts. Water, 17(12), 1738. https://doi.org/10.3390/w17121738