Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials Synthesis
2.2. Experimental Sections
2.3. Chemical Analysis and Characterizations
3. Results and Discussion
3.1. Characterizations of nZVI and S-nZVI
3.2. Effect of Sulfidation on the Reactivity and Structural-Activity of nZVI
3.3. Correlation Analysis of the Reactivity and Structural-Activity of S-nZVI
3.4. Enhanced Redox Reaction of nZVI with Cr(VI) by Sulfidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr(VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Ukhurebor, K.E.; Aigbe, U.O.; Onyancha, R.B.; Nwankwo, W.; Osibote, O.A.; Paumo, H.K.; Ama, O.M.; Adetunji, C.O.; Siloko, I.U. Effect of hexavalent chromium on the environment and removal techniques: A review. J. Environ. Manag. 2021, 280, 111809. [Google Scholar] [CrossRef] [PubMed]
- Orooji, Y.; Nezafat, Z.; Nasrollahzadeh, M.; Kamali, T.A. Polysaccharide-based (nano)materials for Cr(VI) removal. Int. J. Biol. Macromol. 2021, 188, 950–973. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, T.; Li, J.; Yang, Q. Interaction characteristics and mechanism of Cr(VI)/Cr(III) with microplastics: Influence factor experiment and DFT calculation. J. Hazard. Mater. 2024, 476, 134957. [Google Scholar] [CrossRef]
- Guo, Q.; Yu, D.; Yang, J.; Zhao, T.; Yu, D.; Li, L.; Wang, D. A novel sequential extraction method for the measurement of Cr(VI) and Cr(III) species distribution in soil: New insights into the chromium speciation. J. Hazard. Mater. 2024, 480, 135864. [Google Scholar] [CrossRef]
- Maamoun, I.; Falyouna, O.; Eljamal, R.; Idham, M.F.; Tanaka, K.; Eljamal, O. Bench-scale injection of magnesium hydroxide encapsulated iron nanoparticles (nFe0@Mg(OH)2) into porous media for Cr(VI) removal from groundwater. Chem. Eng. J. 2023, 451, 138718. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, S.; Liu, T.; Deng, X. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean. Prod. 2018, 174, 184–190. [Google Scholar] [CrossRef]
- Guan, X.; Yang, H.; Sun, Y.; Qiao, J. Enhanced immobilization of chromium(VI) in soil using sulfidated zero-valent iron. Chemosphere 2019, 228, 370–376. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Wu, X.; Zhang, J.; Qin, H.; Li, J. Relationships of ternary activities for the enhanced Cr(VI) removal by coupling nanoscale zerovalent iron with sulfidation and carboxymethyl cellulose. Environ. Res. 2024, 263, 120274. [Google Scholar] [CrossRef]
- Du, J.; Li, H.; Zhang, J.; Wang, W.; Li, Z.; Li, Q.; Li, J. Kinetic insights into the relationships between anaerobic corrosion and decontamination of nanoscale zerovalent iron improved by sulfidation. Chem. Eng. J. 2024, 501, 157638. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Gu, K.; Li, J. Sulfidation of zerovalent iron for improving the selectivity toward Cr(VI) in oxic water: Involvements of FeSx. J. Hazard. Mater. 2021, 409, 124498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, Z.; Yang, X.; Luo, J.; Li, H.; Chen, H.; Zhang, Q.; Li, J. Mediating the reactivity and selectivity of nanoscale zerovalent iron toward nitrobenzene under porous carbon confinement. Chem. Eng. J. 2020, 393, 124779. [Google Scholar] [CrossRef]
- Al-Amrani, W.A.; Onaizi, S.A. Adsorptive removal of heavy metals from wastewater using emerging nanostructured materials: A state-of-the-art review. Sep. Purif. Technol. 2024, 343, 127018. [Google Scholar] [CrossRef]
- Bae, S.; Collins, R.N.; Waite, T.D.; Hanna, K. Advances in surface passivation of nanoscale zerovalent iron: A critical review. Environ. Sci. Technol. 2018, 52, 12010–12025. [Google Scholar] [CrossRef]
- Li, L.; Xu, Q.; Li, S.; Zhang, W.-X. Wet milling of zerovalent iron in sulfide solution: Preserving and securing the metallic iron. ACS EST Eng. 2022, 2, 703–712. [Google Scholar] [CrossRef]
- Liu, A.; Liu, J.; Han, J.; Zhang, W.-X. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J. Hazard. Mater. 2017, 322, 129–135. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Z.; He, L.; Yang, Y.; Jia, B.; Wang, W.; Liu, S. Modified zero-valent iron nanoparticles enhanced remediation of PCBs-contaminated soil. Sci. Total Environ. 2024, 940, 173349. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Sun, A.; Tong, S.; Su, G.; Jiang, X.; Li, J.; Han, W.; Sun, X.; Wang, L.; et al. Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods. Sci. Total Environ. 2019, 694, 133701. [Google Scholar] [CrossRef]
- Zhou, L.; Li, R.; Zhang, G.; Wang, D.; Cai, D.; Wu, Z. Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chem. Eng. J. 2018, 339, 85–96. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, M.; Shan, L.; Wu, J.; Quan, G.; Cui, L.; Zhang, Y.; Yan, J. Bimetallic FeNi nanoparticles immobilized by biomass-derived hierarchically porous carbon for efficient removal of Cr(VI) from aqueous solution. J. Hazard. Mater. 2022, 423, 127098. [Google Scholar] [CrossRef]
- Yan, W.; Herzing, A.A.; Li, X.-Q.; Kiely, C.J.; Zhang, W.-X. Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environ. Sci. Technol. 2010, 44, 4288–4294. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Ren, H.; Ma, X.; Zhou, S.; Huang, J.; Jiao, W.; Qi, G.; Liu, Y. High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal. Chem. Eng. J. 2020, 390, 124639. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Z.; Shi, S.; Cai, S.; Yang, D.; Yang, L.; He, F.; Liang, L.; Wang, Z. Dual role of soil in dechlorination of soil-sorbed trichloroethene by CMC stabilized and sulfidated nanoscale zero-valent iron. Chem. Eng. J. 2023, 454, 140220. [Google Scholar] [CrossRef]
- Xu, W.; Xia, C.; He, F.; Wang, Z.; Liang, L. Sulfidation of Nanoscale Zero-Valent Iron by Sulfide: The Dynamic Process, Mechanism, and Role of Ferrous Iron. Environ. Sci. Technol. 2024, 58, 17147–17156. [Google Scholar] [CrossRef]
- Fan, D.; Lan, Y.; Tratnyek, P.G.; Johnson, R.L.; Filip, J.; O’Carroll, D.M.; Nunez Garcia, A.; Agrawal, A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. Environ. Sci. Technol. 2017, 51, 13070–13085. [Google Scholar] [CrossRef]
- Guo, J.; Gao, F.; Zhang, C.; Ahmad, S.; Tang, J. Sulfidation of zero-valent iron for enhanced reduction of chlorinated contaminants: A review on the reactivity, selectivity, and interference resistance. Chem. Eng. J. 2023, 477, 147049. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, J.; Sun, Y.; Guan, X. Simultaneous Sequestration of Humic Acid-Complexed Pb(II), Zn(II), Cd(II), and As(V) by Sulfidated Zero-Valent Iron: Performance and Stability of Sequestration Products. Environ. Sci. Technol. 2022, 56, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gu, K.; Zhang, J.; Li, J.; Qian, J.; Shen, J.; Guan, X. Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron. Front. Environ. Sci. Eng. 2023, 18, 14. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Liu, M.; Pan, B.; Zhang, W.; Shi, Z.; Guan, X. Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions. Environ. Sci. Technol. 2018, 52, 2988–2997. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Weng, C.; Bai, W.; Jiao, Y.; Kaegi, R.; Lowry, G.V. Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. Environ. Sci. Technol. 2019, 53, 5936–5945. [Google Scholar] [CrossRef]
- Cao, Z.; Li, H.; Zhang, S.; Hu, Y.; Xu, J.; Xu, X. Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environ. Sci. Nano 2021, 8, 2607–2617. [Google Scholar] [CrossRef]
- Xu, W.; Li, Z.; Shi, S.; Qi, J.; Cai, S.; Yu, Y.; O’Carroll, D.M.; He, F. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: Characterization and trichloroethene dechlorination. Appl. Catal. B-Environ. 2020, 262, 118303. [Google Scholar] [CrossRef]
- Wang, N.; Liu, F.; Li, H.; Zhang, P.; Huang, J.; Zhang, G.; Xiao, T.; Long, J.; Peng, D.; Wang, Y.; et al. High sulfur-to-iron ratios enhance thallium(I) sequestration by sulfidated zero-valent iron. Process Saf. Environ. Prot. 2024, 190, 978–990. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhou, H.; Lou, Z.; Wang, Y.; Xu, X.; Lowry, G.V. Sulfur Dose and Sulfidation Time Affect Reactivity and Selectivity of Post-Sulfidized Nanoscale Zerovalent Iron. Environ. Sci. Technol. 2019, 53, 13344–13352. [Google Scholar] [CrossRef]
- Lv, D.; Zhou, J.; Cao, Z.; Xu, J.; Liu, Y.; Li, Y.; Yang, K.; Lou, Z.; Lou, L.; Xu, X. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere 2019, 224, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Li, X.; Guo, Y.; Lin, Z.; Su, X.; Liu, B. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. J. Hazard. Mater. 2021, 404, 124057. [Google Scholar] [CrossRef]
- Wang, C.-B.; Zhang, W.-X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154–2156. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Sun, Y.; Liang, L.; Pan, B.; Zhang, W.; Guan, X. Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environ. Sci. Technol. 2017, 51, 13533–13544. [Google Scholar] [CrossRef]
- Boukamp, B.A. A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 1986, 20, 31–44. [Google Scholar] [CrossRef]
- Turcio-Ortega, D.; Fan, D.; Tratnyek, P.G.; Kim, E.; Chang, Y.S. Reactivity of Fe/FeS Nanoparticles: Electrolyte Composition Effects on Corrosion Electrochemistry. Environ. Sci. Technol. 2012, 46, 12484–12492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, W.; Fan, Z.; Bao, Z.; Li, J. Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction. Water 2025, 17, 1737. https://doi.org/10.3390/w17121737
Zhang M, Wang W, Fan Z, Bao Z, Li J. Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction. Water. 2025; 17(12):1737. https://doi.org/10.3390/w17121737
Chicago/Turabian StyleZhang, Min, Wenhao Wang, Zherui Fan, Ziwei Bao, and Jinxiang Li. 2025. "Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction" Water 17, no. 12: 1737. https://doi.org/10.3390/w17121737
APA StyleZhang, M., Wang, W., Fan, Z., Bao, Z., & Li, J. (2025). Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction. Water, 17(12), 1737. https://doi.org/10.3390/w17121737