Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials Synthesis
2.2. Experimental Sections
2.3. Chemical Analysis and Characterizations
3. Results and Discussion
3.1. Characterizations of nZVI and S-nZVI
3.2. Effect of Sulfidation on the Reactivity and Structural-Activity of nZVI
3.3. Correlation Analysis of the Reactivity and Structural-Activity of S-nZVI
3.4. Enhanced Redox Reaction of nZVI with Cr(VI) by Sulfidation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr(VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef] [PubMed]
- Ukhurebor, K.E.; Aigbe, U.O.; Onyancha, R.B.; Nwankwo, W.; Osibote, O.A.; Paumo, H.K.; Ama, O.M.; Adetunji, C.O.; Siloko, I.U. Effect of hexavalent chromium on the environment and removal techniques: A review. J. Environ. Manag. 2021, 280, 111809. [Google Scholar] [CrossRef] [PubMed]
- Orooji, Y.; Nezafat, Z.; Nasrollahzadeh, M.; Kamali, T.A. Polysaccharide-based (nano)materials for Cr(VI) removal. Int. J. Biol. Macromol. 2021, 188, 950–973. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, T.; Li, J.; Yang, Q. Interaction characteristics and mechanism of Cr(VI)/Cr(III) with microplastics: Influence factor experiment and DFT calculation. J. Hazard. Mater. 2024, 476, 134957. [Google Scholar] [CrossRef]
- Guo, Q.; Yu, D.; Yang, J.; Zhao, T.; Yu, D.; Li, L.; Wang, D. A novel sequential extraction method for the measurement of Cr(VI) and Cr(III) species distribution in soil: New insights into the chromium speciation. J. Hazard. Mater. 2024, 480, 135864. [Google Scholar] [CrossRef]
- Maamoun, I.; Falyouna, O.; Eljamal, R.; Idham, M.F.; Tanaka, K.; Eljamal, O. Bench-scale injection of magnesium hydroxide encapsulated iron nanoparticles (nFe0@Mg(OH)2) into porous media for Cr(VI) removal from groundwater. Chem. Eng. J. 2023, 451, 138718. [Google Scholar] [CrossRef]
- Zhu, F.; Ma, S.; Liu, T.; Deng, X. Green synthesis of nano zero-valent iron/Cu by green tea to remove hexavalent chromium from groundwater. J. Clean. Prod. 2018, 174, 184–190. [Google Scholar] [CrossRef]
- Guan, X.; Yang, H.; Sun, Y.; Qiao, J. Enhanced immobilization of chromium(VI) in soil using sulfidated zero-valent iron. Chemosphere 2019, 228, 370–376. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Wu, X.; Zhang, J.; Qin, H.; Li, J. Relationships of ternary activities for the enhanced Cr(VI) removal by coupling nanoscale zerovalent iron with sulfidation and carboxymethyl cellulose. Environ. Res. 2024, 263, 120274. [Google Scholar] [CrossRef]
- Du, J.; Li, H.; Zhang, J.; Wang, W.; Li, Z.; Li, Q.; Li, J. Kinetic insights into the relationships between anaerobic corrosion and decontamination of nanoscale zerovalent iron improved by sulfidation. Chem. Eng. J. 2024, 501, 157638. [Google Scholar] [CrossRef]
- Li, H.; Zhang, J.; Gu, K.; Li, J. Sulfidation of zerovalent iron for improving the selectivity toward Cr(VI) in oxic water: Involvements of FeSx. J. Hazard. Mater. 2021, 409, 124498. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cheng, Z.; Yang, X.; Luo, J.; Li, H.; Chen, H.; Zhang, Q.; Li, J. Mediating the reactivity and selectivity of nanoscale zerovalent iron toward nitrobenzene under porous carbon confinement. Chem. Eng. J. 2020, 393, 124779. [Google Scholar] [CrossRef]
- Al-Amrani, W.A.; Onaizi, S.A. Adsorptive removal of heavy metals from wastewater using emerging nanostructured materials: A state-of-the-art review. Sep. Purif. Technol. 2024, 343, 127018. [Google Scholar] [CrossRef]
- Bae, S.; Collins, R.N.; Waite, T.D.; Hanna, K. Advances in surface passivation of nanoscale zerovalent iron: A critical review. Environ. Sci. Technol. 2018, 52, 12010–12025. [Google Scholar] [CrossRef]
- Li, L.; Xu, Q.; Li, S.; Zhang, W.-X. Wet milling of zerovalent iron in sulfide solution: Preserving and securing the metallic iron. ACS EST Eng. 2022, 2, 703–712. [Google Scholar] [CrossRef]
- Liu, A.; Liu, J.; Han, J.; Zhang, W.-X. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J. Hazard. Mater. 2017, 322, 129–135. [Google Scholar] [CrossRef]
- Zhao, M.; Zhao, Z.; He, L.; Yang, Y.; Jia, B.; Wang, W.; Liu, S. Modified zero-valent iron nanoparticles enhanced remediation of PCBs-contaminated soil. Sci. Total Environ. 2024, 940, 173349. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Sun, A.; Tong, S.; Su, G.; Jiang, X.; Li, J.; Han, W.; Sun, X.; Wang, L.; et al. Enhanced nitrobenzene reduction by modified biochar supported sulfidated nano zerovalent iron: Comparison of surface modification methods. Sci. Total Environ. 2019, 694, 133701. [Google Scholar] [CrossRef]
- Zhou, L.; Li, R.; Zhang, G.; Wang, D.; Cai, D.; Wu, Z. Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chem. Eng. J. 2018, 339, 85–96. [Google Scholar] [CrossRef]
- Wang, H.; Zhuang, M.; Shan, L.; Wu, J.; Quan, G.; Cui, L.; Zhang, Y.; Yan, J. Bimetallic FeNi nanoparticles immobilized by biomass-derived hierarchically porous carbon for efficient removal of Cr(VI) from aqueous solution. J. Hazard. Mater. 2022, 423, 127098. [Google Scholar] [CrossRef]
- Yan, W.; Herzing, A.A.; Li, X.-Q.; Kiely, C.J.; Zhang, W.-X. Structural Evolution of Pd-Doped Nanoscale Zero-Valent Iron (nZVI) in Aqueous Media and Implications for Particle Aging and Reactivity. Environ. Sci. Technol. 2010, 44, 4288–4294. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Ren, H.; Ma, X.; Zhou, S.; Huang, J.; Jiao, W.; Qi, G.; Liu, Y. High-gravity continuous preparation of chitosan-stabilized nanoscale zero-valent iron towards Cr(VI) removal. Chem. Eng. J. 2020, 390, 124639. [Google Scholar] [CrossRef]
- Chen, B.; Wu, Z.; Shi, S.; Cai, S.; Yang, D.; Yang, L.; He, F.; Liang, L.; Wang, Z. Dual role of soil in dechlorination of soil-sorbed trichloroethene by CMC stabilized and sulfidated nanoscale zero-valent iron. Chem. Eng. J. 2023, 454, 140220. [Google Scholar] [CrossRef]
- Xu, W.; Xia, C.; He, F.; Wang, Z.; Liang, L. Sulfidation of Nanoscale Zero-Valent Iron by Sulfide: The Dynamic Process, Mechanism, and Role of Ferrous Iron. Environ. Sci. Technol. 2024, 58, 17147–17156. [Google Scholar] [CrossRef]
- Fan, D.; Lan, Y.; Tratnyek, P.G.; Johnson, R.L.; Filip, J.; O’Carroll, D.M.; Nunez Garcia, A.; Agrawal, A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. Environ. Sci. Technol. 2017, 51, 13070–13085. [Google Scholar] [CrossRef]
- Guo, J.; Gao, F.; Zhang, C.; Ahmad, S.; Tang, J. Sulfidation of zero-valent iron for enhanced reduction of chlorinated contaminants: A review on the reactivity, selectivity, and interference resistance. Chem. Eng. J. 2023, 477, 147049. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, J.; Sun, Y.; Guan, X. Simultaneous Sequestration of Humic Acid-Complexed Pb(II), Zn(II), Cd(II), and As(V) by Sulfidated Zero-Valent Iron: Performance and Stability of Sequestration Products. Environ. Sci. Technol. 2022, 56, 3127–3137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gu, K.; Zhang, J.; Li, J.; Qian, J.; Shen, J.; Guan, X. Partial aging can counter-intuitively couple with sulfidation to improve the reactive durability of zerovalent iron. Front. Environ. Sci. Eng. 2023, 18, 14. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Liu, M.; Pan, B.; Zhang, W.; Shi, Z.; Guan, X. Enhanced Reactivity and Electron Selectivity of Sulfidated Zerovalent Iron toward Chromate under Aerobic Conditions. Environ. Sci. Technol. 2018, 52, 2988–2997. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Weng, C.; Bai, W.; Jiao, Y.; Kaegi, R.; Lowry, G.V. Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. Environ. Sci. Technol. 2019, 53, 5936–5945. [Google Scholar] [CrossRef]
- Cao, Z.; Li, H.; Zhang, S.; Hu, Y.; Xu, J.; Xu, X. Properties and reactivity of sulfidized nanoscale zero-valent iron prepared with different borohydride amounts. Environ. Sci. Nano 2021, 8, 2607–2617. [Google Scholar] [CrossRef]
- Xu, W.; Li, Z.; Shi, S.; Qi, J.; Cai, S.; Yu, Y.; O’Carroll, D.M.; He, F. Carboxymethyl cellulose stabilized and sulfidated nanoscale zero-valent iron: Characterization and trichloroethene dechlorination. Appl. Catal. B-Environ. 2020, 262, 118303. [Google Scholar] [CrossRef]
- Wang, N.; Liu, F.; Li, H.; Zhang, P.; Huang, J.; Zhang, G.; Xiao, T.; Long, J.; Peng, D.; Wang, Y.; et al. High sulfur-to-iron ratios enhance thallium(I) sequestration by sulfidated zero-valent iron. Process Saf. Environ. Prot. 2024, 190, 978–990. [Google Scholar] [CrossRef]
- Xu, J.; Cao, Z.; Zhou, H.; Lou, Z.; Wang, Y.; Xu, X.; Lowry, G.V. Sulfur Dose and Sulfidation Time Affect Reactivity and Selectivity of Post-Sulfidized Nanoscale Zerovalent Iron. Environ. Sci. Technol. 2019, 53, 13344–13352. [Google Scholar] [CrossRef]
- Lv, D.; Zhou, J.; Cao, Z.; Xu, J.; Liu, Y.; Li, Y.; Yang, K.; Lou, Z.; Lou, L.; Xu, X. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. Chemosphere 2019, 224, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Li, X.; Guo, Y.; Lin, Z.; Su, X.; Liu, B. The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur. J. Hazard. Mater. 2021, 404, 124057. [Google Scholar] [CrossRef]
- Wang, C.-B.; Zhang, W.-X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 1997, 31, 2154–2156. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Sun, Y.; Liang, L.; Pan, B.; Zhang, W.; Guan, X. Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environ. Sci. Technol. 2017, 51, 13533–13544. [Google Scholar] [CrossRef]
- Boukamp, B.A. A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 1986, 20, 31–44. [Google Scholar] [CrossRef]
- Turcio-Ortega, D.; Fan, D.; Tratnyek, P.G.; Kim, E.; Chang, Y.S. Reactivity of Fe/FeS Nanoparticles: Electrolyte Composition Effects on Corrosion Electrochemistry. Environ. Sci. Technol. 2012, 46, 12484–12492. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Wang, W.; Fan, Z.; Bao, Z.; Li, J. Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction. Water 2025, 17, 1737. https://doi.org/10.3390/w17121737
Zhang M, Wang W, Fan Z, Bao Z, Li J. Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction. Water. 2025; 17(12):1737. https://doi.org/10.3390/w17121737
Chicago/Turabian StyleZhang, Min, Wenhao Wang, Zherui Fan, Ziwei Bao, and Jinxiang Li. 2025. "Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction" Water 17, no. 12: 1737. https://doi.org/10.3390/w17121737
APA StyleZhang, M., Wang, W., Fan, Z., Bao, Z., & Li, J. (2025). Correlation Between the Structural-Activity of Sulfidated Nanoscale Zerovalent Iron and Its Enhanced Reactivity for Cr(VI) Reduction. Water, 17(12), 1737. https://doi.org/10.3390/w17121737