Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geology and Hydrogeology
2.3. Groundwater Sampling and Analytical Procedures
2.4. Multivariate Statistical Analysis
2.5. Water Quality Index for Agricultural Purposes
2.6. GIS Analysis Mapping of Water Quality
2.7. Model Performance and Evaluation
- Prediction (Regression, mean of T trees):
- Split Criterion (Classification, Gini impurity):
- Loss Function (Regression, MSE):
- Update Rule (Step t):Ft(x) = Ft−1(x) + η⋅ht, where ht(x) ≈ −∇FL(y,Ft−1(x))
- Optimization: gradient descent on residualsrit = yi − Ft−1(xi).
- Distance Metric:
- Regression (Mean of K neighbors):
3. Results
3.1. Characterization of Groundwater
3.2. Hydrochemical Facies Type of Groundwater
3.3. Hydrogeochemical Process
3.4. Hierarchical Cluster Analysis
3.5. Irrigation Water Quality Assessment
3.5.1. Sodium Absorption Ratio (SAR)
3.5.2. Sodium Percentage (%)
3.5.3. Residual Sodium Carbonate (RSC)
3.5.4. Permeability Index (PI)
3.5.5. Kelly’s Index (KI)
3.5.6. Total Hardness (TH)
3.6. Machine Learning Analysis and Modeling
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture. Irrigation and Drainage; paper No. 29; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; pp. 1–117. [Google Scholar]
- Rowe, D.R.; Abdel-Magid, I.M. Handbook of Wastewater Reclamation and Reuse; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Singh, S.K.; Srivastava, P.K.; Pandey, A.C.; Gautam, S.K. Integrated assessment of groundwater influenced by a confluence river system: Concurrence with remote sensing and geochemical modelling. Water Resour. Manag. 2013, 27, 4291–4313. [Google Scholar] [CrossRef]
- Gautam, S.K.; Maharana, C.; Sharma, D.; Singh, A.K.; Tripathi, J.K.; Singh, S.K. Evaluation of groundwater quality in the Chotanagpur Plateau region of the Subarnarekha River Basin, Jharkhand State, India. Sustain. Water Qual. Ecol. 2015, 6, 57–74. [Google Scholar] [CrossRef]
- Gautam, S.K.; Singh, A.K.; Tripathi, J.K.; Singh, S.K.; Srivastava, P.K.; Narsimlu, B.; Singh, P. Appraisal of surface and groundwater of the Subarnarekha River Basin, Jharkhand, India: Using remote sensing, irrigation indices, and statistical techniques. In Geospatial Technology for Water Resource Applications; Srivastva, P.K., Pandey, P.C., Kumar, P., Raghubanshi, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 144–169. [Google Scholar]
- Nemčić-Jurec, J.; Singh, S.K.; Jazbec, A.; Gautam, S.K.; Kovač, I. Hydrochemical investigations of groundwater quality for drinking and irrigational purposes: Two case studies of Koprivnica-Križevci County (Croatia) and district Allahabad (India). Sustain. Water Resour. Manag. 2017, 5, 467–490. [Google Scholar] [CrossRef]
- Refat, N.; Humayan, A. Groundwater geochemistry and hydrogeochemical processes in the Lower Ganges-Brahmaputra-Meghna River Basin areas, Bangladesh. J. Asian Earth Sci. 2021, 6, 100062. [Google Scholar] [CrossRef]
- Kattan, Z. Using hydrochemistry and environmental isotopes in the assessment of groundwater quality in the Euphrates alluvial aquifer, Syria. Environ. Earth Sci. 2018, 77, 45. [Google Scholar] [CrossRef]
- Singh, S.; Ghosh, N.C.; Gurjar, S.; Krishan, G.; Kumar, S.; Berwal, P. Index-based assessment of suitability of water quality for irrigation purposes under Indian conditions. Environ. Monit. Assess. 2018, 190, 29. [Google Scholar] [CrossRef]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Abbasi, S.A. Water Quality Indices; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Sener, S.; Sener, E.; Davraz, A. Evaluation of water quality using the water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef]
- Jamali, M.Z.; Solangi, G.S.; Keerio, M.A.; Keerio, J.A.; Bheel, N. Assessing and mapping the groundwater quality of Taluka Larkana, Sindh, Pakistan using water quality indices and geospatial tools. Int. J. Environ. Sci. Technol. 2023, 20, 8849–8862. [Google Scholar] [CrossRef]
- Khan, M.; Almazah, M.M.A.; Elahi, A.; Niaz, R.; Al-Rezami, A.Y.; Zaman, B. Spatial interpolation of water quality index based on Ordinary kriging and Universal kriging. Geomat. Nat. Hazards Risk 2023, 14, 2190853. [Google Scholar] [CrossRef]
- Vadiati, M.; Asghari-Moghaddam, A.; Nakhaei, M.; Adamowski, J.; Akbarzadeh, A.H. A fuzzy-logic-based decision-making approach for identification of groundwater quality based on groundwater quality indices. J. Environ. Manag. 2016, 184, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Frincu, R.M. Artificial intelligence in water quality monitoring: A review of water quality assessment applications. Water Qual. Res. J. 2025, 60, 164–176. [Google Scholar] [CrossRef]
- Pérez-Beltrán, C.H.; Robles, A.D.; Rodríguez, N.A.; Ortega-Gavilán, F.; Jiménez-Carvelo, A.M. Artificial intelligence and water quality: From drinking water to wastewater. TrAC Trends Anal. Chem. 2024, 172, 117597. [Google Scholar] [CrossRef]
- Judeh, T.; Bian, H.; Shahrour, I. GIS-based spatiotemporal mapping of groundwater potability and palatability indices in arid and semi-arid areas. Water 2021, 13, 1323. [Google Scholar] [CrossRef]
- Abboud, I.A. Geochemistry and quality of groundwater of the Yarmouk basin aquifer, North Jordan. Environ. Geochem. Health 2017, 40, 1405–1435. [Google Scholar] [CrossRef]
- Arslan, H. Determination of temporal and spatial variability of groundwater irrigation quality using geostatistical techniques on the coastal aquifer of Çars¸amba Plain, Turkey, from 1990 to 2012. Environ. Earth Sci. 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Bodrud-Doza, M.; Islam, A.R.M.T.; Ahmed, F.; Das, S.; Saha, N.; Rahman, M.S. Characterization of groundwater quality using water evaluation indices, multivariate statistics, and geostatistics in central Bangladesh. Water Sci. 2016, 30, 19–40. [Google Scholar] [CrossRef]
- Chabuk, A.; Jahad, U.A.; Majdi, A.; Majdi, H.S.; Hadi, A.A.; Hadi, H.; Al-Ansari, N.; Isam, M. Integrating WQI and GIS to assess water quality in Shatt Al-Hillah River, Iraq using physicochemical and heavy metal elements. Appl. Water Sci. 2023, 13, 147. [Google Scholar] [CrossRef]
- Zafar, M.M.; Kumari, A. Spatio-temporal evaluation of the impact of anthropogenic stressors on physicochemical characteristics and water quality of the River Ganga using GIS-based approach in the middle Gangetic Plains at Patna, Bihar, India. Water Sci. Technol. 2024, 89, 1382–1400. [Google Scholar] [CrossRef]
- Zafar, M.M.; Sulaiman, M.A.; Prabhakar, R.; Kumari, A. Evaluation of the suitability of groundwater for irrigational purposes using irrigation water quality indices and geographical information systems (GIS) at Patna (Bihar), India. Int. J. Energy Water Resour. 2022, 8, 241–254. [Google Scholar] [CrossRef]
- Boutaleb, A.; Aïssa, D.E.; Touahri, B. Les gîtesplombo-zincifères du Hodna: Minéralisationscomparables au type «Vallée du Mississippi» (Nord-Est Algérien). Bull. Du Serv. Géologique De L’algérie 1999, 10, 55–71. [Google Scholar]
- Bellion, Y.J. Étude géologique et hydrogéologique de la terminaison occidentale des Monts de Bellezma (Algérie). Doctor’s Thesis, 3ème Cycle, Université de Paris, Paris, France, 1972; pp. 145–169. [Google Scholar]
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Statistical categorization geochemical modeling of groundwater in Ain Azel plain (Algeria). J. Afr. Earth Sci. 2011, 59, 140–148. [Google Scholar] [CrossRef]
- Boutaleb, A. Les minéralisations à Pb–Zn du domaineSétifien-Hodna: Gitologie, pétrographie des dolomies, microthermométrie et implications métallogéniques. Ph.D. Thesis, Statement in Mining Geology, IST, USTHB, Algiers, Algeria, 2001. [Google Scholar]
- Rodier, J.; Bazin, C.; Broutin, J.P.; Chambon, P.; Rodi, L.; Vernier, M. L’analyse de l’eau: Eaux naturelles, eaux résiduaires, eau de mer, 9th ed.; Dunod: Malakoff, France, 2009. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology, 2nd ed.; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Cloutier, V.; Lefebvre, R.; Therrien, R.; Savard, M. Multivariate statistical analysis of geochemical data as indicative of the hydrogeochemical evolution of groundwater in a sedimentary rock aquifer system. J. Hydrol. 2008, 353, 294–313. [Google Scholar] [CrossRef]
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—A case study: Ain Azel plain (Algeria). Geoderma 2010, 159, 390–398. [Google Scholar] [CrossRef]
- Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Elsayed, S. Combining hydrogeochemical characterization and a hyperspectral reflectance tool for assessing quality and suitability of two groundwater resources for irrigation in Egypt. Water 2020, 12, 2169. [Google Scholar] [CrossRef]
- Belkhiri, L.; Tiri, A.; Mouni, L. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundw. Sustain. Dev. 2020, 11, 100473. [Google Scholar] [CrossRef]
- Mammeri, A.; Tiri, A.; Belkhiri, L.; Salhi, H.; Brella, D.; Lakouas, E.; Tahraoui, H.; Amrane, A.; Mouni, L. Assessment of Surface Water Quality Using Water Quality Index and Discriminant Analysis Method. Water 2023, 15, 680. [Google Scholar] [CrossRef]
- Ajayi, F.; Nduru, M.; Oningue, A. Halting the salt that kills crops. Afr. Farmer 1990, 4, 10–12. [Google Scholar]
- Richards, L. Diagnosis and improvement of saline and alkali soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- Wilcox, L. Classification and Use of Irrigation Waters; USDA: Washington, DC, USA, 1955. [Google Scholar]
- Raghunath, I. Groundwater, 2nd ed.; Wiley Eastern Ltd.: New Delhi, India, 1987; pp. 344–369. [Google Scholar]
- Doneen, L.D. Notes on Water Quality in Agriculture; Water Science and Engineering Paper 4001; Department of Water, University of California: Davis, CA, USA, 1964. [Google Scholar]
- Kelley, W.P. Use of saline irrigation water. Soil Sci. 1963, 95, 385–391. [Google Scholar] [CrossRef]
- Todd, D.K. Groundwater Hydrology, 2nd ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Singh, V.P.; Fiorentino, M. Geographic Information System in Hydrology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar]
- Karim, M.R.; Arham, M.A.; Shorif MJ, U.; Ahsan, A.; Al-Ansari, N. GIS based geostatistical modelling and trends analysis of groundwater quality for suitable uses in Dhaka division. Sci. Rep. 2024, 14, 17449. [Google Scholar] [CrossRef] [PubMed]
- Theodossiou, N.; Latinopoulos, P. Evaluation and optimization of groundwater observation networks using the kriging methodology. Environ. Model. Softw. 2006, 21, 991–1000. [Google Scholar] [CrossRef]
- Maleky, S.; Faraji, M.; Hashemi, M.; Esfandyari, A. Investigation of groundwater quality indices and health risk assessment of water resources of Jiroft city, Iran, by machine learning algorithms. Appl. Water Sci. 2025, 15, 1–22. [Google Scholar] [CrossRef]
- Abbas, F.; Cai, Z.; Shoaib, M.; Iqbal, J.; Ismail, M.; Alrefaei, A.F.; Albeshr, M.F. Machine learning models for water quality prediction: A comprehensive analysis and uncertainty assessment in Mirpurkhas, Sindh, Pakistan. Water 2024, 16, 941. [Google Scholar] [CrossRef]
- Hussein, E.E.; Derdour, A.; Zerouali, B.; Almaliki, A.; Wong, Y.J.; Santos, M.B.-D.L.; Ngoc, P.M.; Hashim, M.A.; Elbeltagi, A. Groundwater Quality Assessment and Irrigation Water Quality Index Prediction Using Machine Learning Algorithms. Water 2024, 16, 264. [Google Scholar] [CrossRef]
- Sangwan, V.; Bhardwaj, R. Machine learning framework for predicting water quality classification. Water Pract. Technol. 2024, 19, 4499–4521. [Google Scholar] [CrossRef]
- Krishnan, S.; Manikandan, R. Water quality prediction: A data-driven approach exploiting advanced machine learning algorithms with data augmentation. J. Water Clim. Change 2023, 15, 431–452. [Google Scholar] [CrossRef]
- Sharma, A.; Sharma, R.; Rana, R.; Kalia, A. Water quality prediction using Machine Learning Models. In Proceedings of the E3S Web of Conferences, Paris, France, 16–19 October 2024; EDP Sciences: Les Ulis, France, 2024; Volume 596, p. 01025. [Google Scholar]
- FAO. Water Quality for Agriculture. Food and Agriculture Organization. 1985. Available online: http://www.fao.org/docrep/003/T0234E/T0234E00.htm (accessed on 24 May 2025).
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Mansouri, Z.; Menani, M.R. The study of the hydrodynamic characteristics and the vulnerability of the plain alluvionnaire of KsarBelezma (Algerian northeast). Larhyss J. 2016, 26, 237–247. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Merino, L.; Aguilera, H.; González-Jiménez, M.; Díaz-Losada, E. D-Piper: A modified Piper diagram to represent big sets of hydrochemical analyses. Environ. Model. Softw. 2021, 138, 104979. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water analyses. EOS Trans Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Kumar, S.K.; Logeshkumaran, A.; Magesh, N.S.; Godson, P.S. Hydro-geochemistry and application of water quality index (DWQI) for groundwater quality assessment, Anna Nagar, part of Chennai city, Tamil Nadu, India. Appl. Water Sci. 2015, 5, 335–343. [Google Scholar] [CrossRef]
- Abdelbaki, H.; Belkendil, A.; Maazouzi, A.; Mekkaoui, A. Assessment of hydrochemical properties of groundwater in the alluvial aquifer of the arid zone of the Igli Region, South-West of Algeria. Desalination Water Treat. 2022, 268, 153–169. [Google Scholar] [CrossRef]
- Polemio, M.; Limoni, P.P.; Mitolo, D.; Santaloia, F. Nitrate pollution and quality degradation of Ionian coastal groundwater (Southern Italy). In Nitrates in Groundwater; CNR: Roma, Italia, 2005. [Google Scholar]
- Petrucci, O.; Polemio, M. Flood risk mitigation and anthropogenic modifications of a coastal plain in southern Italy: Combined effects over the past 150 years. Nat. Hazards Earth Syst. Sci. 2007, 7, 361. [Google Scholar] [CrossRef]
- Banks, D.; Frengstad, B. Evolution of groundwater chemical composition by plagioclase hydrolysis in Norwegian anorthosites. Geochim. Et Cosmochim. Acta 2006, 70, 1337–1355. [Google Scholar] [CrossRef]
- Saleh, A.; Al-Ruwaih, F.; Shehata, M. Hydrogeochemical processes operating within the main aquifers of Kuwait. J. Arid. Environ. 1999, 42, 195–209. [Google Scholar] [CrossRef]
- Pacheco Castro, R.; Pacheco Ávila, J.; Ye, M.; Cabrera Sansores, A. Groundwater quality: Analysis of its temporal and spatial variability in a karst aquifer. Groundwater 2017, 56, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Belkendil, A.; Habi, M.; Morsli, B. Evaluation of the physico-chemical quality of groundwater in arid areas: Case study (watershed of the Oued Bechar) in Bechar-Kenadsa Region. Desalination Water Treat. 2018, 107, 136–146. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Zhang, Y.; Wu, X.; Zhang, C. Analysis of the Hydrogeochemical Characteristics and Origins of Groundwater in the Changbai Mountain Region via Inverse Hydrogeochemical Modeling and Unsupervised Machine Learning. Water 2024, 16, 1853. [Google Scholar] [CrossRef]
- Schoeller, H. Qualitative evaluation of groundwater resources. In Methods and Techniques of Groundwater Investigation and Development; Water Resource Series No. 33; UNESCO: Paris, France, 1967. [Google Scholar]
- Bakelli, O.; Hadj-Said, S.; Mahmood, T.H.; Zeddouri, A.; Hamdi-Aissa, B.; Kharroubi, M. Hydrogeochemistry and Spatial–Temporal Groundwater Quality Assessment of the Alluvial Aquifer in the Guerrara Region (Algeria). In Proceedings of the Euro-Mediterranean Conference for Environmental Integration, Sousse, Tunisia, 1–4 November 2022; Springer Nature: Cham, Switzerland, 2022; pp. 423–426. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Shannon, M.C. Salinity. In Micro Irrigation for Crop Production; Lamm, F.R., Ayars, J.E., Nakayama, F.S., Eds.; Elsevier: New York, NY, USA, 2007; pp. 131–160. [Google Scholar]
- Thomas, J.; Joseph, S.; Arunkumar TM MK, S. Seasonal Variation in Major Ion Chemistry of a Tropical Mountain River, the Southern Western Ghats, Kerala, India. Environ. Geol. 2014, 71, 2333–2351. [Google Scholar] [CrossRef]
- Ghalib, H.B. Groundwater chemistry evaluation for drinking and irrigation utilities in east Wasit province, Central Iraq. Appl. Water Sci. 2017, 7, 3447–3467. [Google Scholar] [CrossRef]
- Eaton, F.M. Significance in carbonate in irrigation water. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Subba Rao, N.; Surya Rao, P.; Venktram Reddy, G.; Nagamani, M.; Vidyasagar, G.; Satyanarayana NL, V.V. Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ. Monit. Assess. 2012, 184, 5189–5214. [Google Scholar]
- Chitsazan, M.; Aghazadeh, N.; Mirzaee, Y.; Golestan, Y.; Mosavi, S. Hydrochemical characteristics and quality assessment of urban groundwater in Urmia City, NW Iran. Water Supply 2017, 17, 1410–1425. [Google Scholar] [CrossRef]
- Singh, A.K.; Mondal, G.C.; Kumar, S.; Singh, T.B.; Tewary, B.K.; Sinha, A. Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environ. Geol. 2008, 54, 745–758. [Google Scholar] [CrossRef]
- Obiefuna, G.I.; Sheriff, A. Assessment of shallow groundwater quality of Pindiga Gombe Area, Yola Area, NE, Nigeria for irrigation and domestic purposes. Res. J. Environ. Earth Sci. 2011, 3, 131–141. [Google Scholar]
- Paliwal, K.V. Effects of gypsum application on the quality of irrigation water. Madras Agric. J. 1967, 59, 646–647. [Google Scholar]
- Jalali, M. Salinization of groundwater in arid and semi-arid zones: An example from Tajarak, western Iran. Environ. Geol. 2007, 52, 1133–1149. [Google Scholar] [CrossRef]
- Goodarzi, M.R.; Niknam, A.R.R.; Barzkar, A.; Niazkar, M.; Zare Mehrjerdi, Y.; Abedi, M.J.; Heydari Pour, M. Water Quality Index Estimations Using Machine Learning Algorithms: A Case Study of Yazd-Ardakan Plain, Iran. Water 2023, 15, 1876. [Google Scholar] [CrossRef]
- Sawyer, C.N.; McCarty, P.L. Chemistry for Sanitary Engineers; McGraw Hill: New York, NY, USA, 1967. [Google Scholar]
- Gagai, A.; Aouissi, H.A.; Bencedira, S.; Hinge, G.; Athamena, A.; Heddam, S.; Gad, M.; Elsherbiny, O.; Elsayed, S.; Eid, M.H.; et al. Application of Water Quality Indices, Machine Learning Approaches, and GIS to Identify Groundwater Quality for Irrigation Purposes: A Case Study of Sahara Aquifer, Doucen Plain, Algeria. Water 2023, 15, 289. [Google Scholar] [CrossRef]
- WHO. Hardness in Drinking-Water; WHO: Geneva, Switzerland, 2011; p. 5. [Google Scholar]
Parameters | Equations | Reference |
---|---|---|
Sodium Adsorption Ratio (meq/L) | [37] | |
Sodium Hazard | [38] | |
Residual Sodium Carbonate (meq/L) | RSC= [HCO3− +CO32−] − [Ca2+ + Mg+] | [39] |
Permeability Index | [40] | |
Kelly’s Ratio | [41] | |
Total Hardness | TH = 2.497 Ca2+ + 4.11 Mg2+ | [42] |
Parameters | Unit | Min | Median | Max | Drinking Water Standards | Irrigation Water Standards |
---|---|---|---|---|---|---|
pH | 6.7 | 7.19 | 7.47 | 6.5–8.5 | 6.0–8.5 | |
EC | µs/cm | 1200 | 800 | 1700 | 500–1500 | 3000 |
Ca2+ | mg/L | 49.32 | 78.09 | 406.89 | 75–200 | 400 |
Mg2+ | mg/L | 29.16 | 48.60 | 240.57 | 30–150 | 60 |
Cl− | mg/L | 20.59 | 20.59 | 102.24 | 250 | 1100 |
HCO3− | mg/L | 195.20 | 317.20 | 402.60 | 300–500 | 600 |
Na+ | mg/L | 44.46 | 123.03 | 181.60 | 200 | 900 |
K+ | mg/L | 0.43 | 1.23 | 3.64 | 12 | 2 |
SO42− | mg/L | 57.60 | 77.57 | 119.04 | 250 | 1000 |
TDS | mg/L | 457 | 744 | 1219 | 500–1000 | 2000 |
Wells | SAR (meq/L) | RSC (meq/L) | Na% | PI | TH | KR |
---|---|---|---|---|---|---|
E1 | 1.77 | −10.57 | 20.27 | 20.49 | 78 | 8.89 |
E2 | 0.41 | −32.25 | 24.68 | 24.79 | 99 | 21.04 |
E3 | 0.82 | −19.50 | 20.31 | 20.49 | 64 | 13.96 |
E4 | 1.35 | −0.73 | 10.03 | 10.69 | 18 | 4.64 |
E5 | 2.80 | −1.60 | 19.08 | 19.60 | 22 | 5.45 |
E6 | 3.22 | −0.68 | 17.62 | 18.27 | 16 | 4.24 |
E7 | 1.72 | −10.22 | 20.22 | 20.46 | 40 | 9.1 |
E8 | 1.32 | −18.12 | 23.53 | 23.67 | 60 | 13.15 |
E9 | 0.79 | −23.32 | 22.59 | 22.74 | 74 | 15.98 |
E10 | 0.52 | −28.17 | 22.38 | 22.50 | 84 | 18.01 |
E11 | 1.43 | 1.85 | 9.62 | 10.47 | 16 | 4.24 |
E12 | 2.19 | −5.02 | 19.90 | 20.26 | 31 | 7.27 |
E13 | 2.47 | −0.07 | 14.83 | 15.51 | 17 | 4.44 |
E14 | 2.97 | −2.26 | 20.47 | 21.01 | 23 | 5.65 |
E15 | 1.02 | −4.15 | 11.36 | 11.79 | 27 | 6.46 |
E16 | 1.63 | −21.54 | 29.08 | 29.19 | 69 | 14.97 |
E17 | 2.048 | −4.50 | 16.90 | 17.29 | 26 | 6.26 |
E18 | 1.24 | −0.02 | 8.42 | 9.19 | 15 | 4.03 |
E19 | 0.69 | −14.14 | 15.31 | 15.52 | 49 | 10.92 |
E20 | 2.93 | −0.52 | 15.63 | 16.36 | 15 | 4.03 |
E21 | 2.07 | 1.65 | 11.49 | 12.36 | 14 | 3.83 |
E22 | 2.31 | −0.88 | 12.44 | 13.18 | 14 | 3.83 |
E23 | 2.30 | −1.75 | 14.50 | 15.10 | 18 | 4.64 |
E24 | 0.96 | −0.73 | 6.52 | 7.29 | 13 | 3.63 |
E25 | 1.26 | 0.95 | 7.31 | 8.27 | 12 | 3.43 |
E26 | 1.15 | 1.30 | 7.27 | 8.20 | 13 | 3.63 |
E27 | 2.52 | 1.25 | 13.90 | 14.74 | 15 | 4.03 |
E28 | 1.97 | −3.06 | 16.68 | 17.29 | 20 | 7.07 |
E29 | 2.46 | −0.73 | 15.25 | 15.90 | 18 | 4.64 |
E30 | 3.75 | −1.64 | 18.50 | 19.08 | 14 | 3.83 |
Value | Class | |
---|---|---|
SAR | <10 | Excellent |
10–18 | Good | |
18–26 | Fair | |
Total Hardness (TH) mg/L | <75 | Soft |
75–150 | ||
150–300 | Hard | |
KR | KR > 1 | Unsuitable |
KR < 1 | Safe | |
PI | >75 | Good |
25–75% | Doubeful | |
<25 | Unsuitable | |
RSC | <1.25 | Good |
1.25–2.5 | Doubeful | |
>25 | Unsuitable | |
Na% | <20 | Excellent |
20–40 | Good | |
40–60 | Permissible | |
60–80 | Doubtful | |
>80 | Unsuitable |
Parameters | SVR | Random Forest | |||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | MSE | MAE | RMSE | R2 | MSE | MAE | ||
Train | KR | 2.8576 | 0.534 | 8.1658 | 1.1164 | 0.5244 | 0.9843 | 0.275 | 0.2422 |
SAR | 0.1651 | 0.9617 | 0.0273 | 0.1273 | 0.1757 | 0.9566 | 0.0309 | 0.1337 | |
RSC | 6.7181 | 0.3359 | 45.1329 | 3.398 | 1.1067 | 0.982 | 1.2247 | 0.6338 | |
TH | 22.4933 | 0.0321 | 505.9487 | 12.2171 | 4.564 | 0.9602 | 20.8298 | 2.1571 | |
Na% | 2.0685 | 0.8071 | 4.2786 | 1.3398 | 0.3572 | 0.9942 | 0.1276 | 0.2762 | |
PI | 1.9326 | 0.8158 | 3.7348 | 1.2425 | 0.381 | 0.9928 | 0.1452 | 0.2892 | |
Test | KR | 5.4267 | 0.1467 | 29.449 | 4.2197 | 1.1899 | 0.959 | 1.4159 | 0.8923 |
SAR | 0.2129 | 0.8143 | 0.0453 | 0.1736 | 0.4006 | 0.3424 | 0.1605 | 0.3636 | |
RSC | 12.9647 | −0.2189 | 168.0836 | 9.2305 | 2.8167 | 0.9425 | 7.9339 | 2.125 | |
TH | 36.8698 | −0.4876 | 1359.3847 | 27.5768 | 4.452 | 0.9783 | 19.8202 | 3.7867 | |
Na% | 5.3252 | 0.5606 | 28.3582 | 4.3102 | 2.6902 | 0.8879 | 7.2372 | 1.7011 | |
PI | 5.0522 | 0.5756 | 25.5249 | 4.0903 | 2.7844 | 0.8711 | 7.7529 | 1.9272 | |
Gradient Boosting | KNNs | ||||||||
RMSE | R2 | MSE | MAE | RMSE | R2 | MSE | MAE | ||
Train | KR | 0.0005 | 1 | 0 | 0.0003 | 1.8661 | 0.8013 | 3.4822 | 1.0581 |
SAR | 0.0048 | 1 | 0 | 0.004 | 0.3791 | 0.7979 | 0.1437 | 0.2999 | |
RSC | 0.0206 | 1 | 0.0004 | 0.017 | 3.4421 | 0.8257 | 11.848 | 2.0071 | |
TH | 0.0048 | 1 | 0 | 0.0034 | 10.5775 | 0.786 | 111.883 | 5.8167 | |
Na% | 0.0005 | 1 | 0 | 0.0003 | 1.5969 | 0.885 | 2.5501 | 1.1928 | |
PI | 0.0009 | 1 | 0 | 0.0006 | 1.5212 | 0.8859 | 2.3141 | 1.1102 | |
Test | KR | 1.2763 | 0.9528 | 1.6291 | 0.9413 | 2.3682 | 0.8375 | 5.6086 | 1.971 |
SAR | 0.4322 | 0.2347 | 0.1868 | 0.3539 | 0.4786 | 0.0618 | 0.229 | 0.4547 | |
RSC | 1.9734 | 0.9718 | 3.8942 | 1.5466 | 4.5627 | 0.849 | 20.8187 | 3.2015 | |
TH | 6.1662 | 0.9584 | 38.0217 | 4.7814 | 9.3748 | 0.9038 | 87.8867 | 6.1 | |
Na% | 2.3419 | 0.915 | 5.4846 | 1.5938 | 3.313 | 0.8299 | 10.9762 | 2.3841 | |
PI | 2.4017 | 0.9041 | 5.7681 | 1.6547 | 3.2857 | 0.8205 | 10.796 | 2.3724 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansouri, Z.; Dinar, H.; Belkendil, A.; Bakelli, O.; Drias, T.; Assadi, A.A.; Khezami, L.; Mouni, L. Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches. Water 2025, 17, 1698. https://doi.org/10.3390/w17111698
Mansouri Z, Dinar H, Belkendil A, Bakelli O, Drias T, Assadi AA, Khezami L, Mouni L. Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches. Water. 2025; 17(11):1698. https://doi.org/10.3390/w17111698
Chicago/Turabian StyleMansouri, Zineb, Haythem Dinar, Abdeldjalil Belkendil, Omar Bakelli, Tarek Drias, Amine Aymen Assadi, Lotfi Khezami, and Lotfi Mouni. 2025. "Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches" Water 17, no. 11: 1698. https://doi.org/10.3390/w17111698
APA StyleMansouri, Z., Dinar, H., Belkendil, A., Bakelli, O., Drias, T., Assadi, A. A., Khezami, L., & Mouni, L. (2025). Integrated Groundwater Quality Assessment for Irrigation in the Ras El-Aioun District: Combining IWQI, GIS, and Machine Learning Approaches. Water, 17(11), 1698. https://doi.org/10.3390/w17111698