Soil Moisture Retrieval in North America with Passive Microwave and Auxiliary Data Based on Variable Spatial Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.2.1. Modeled SMC Data
2.2.2. SMAP Brightness Temperature Data
2.2.3. MODIS Data
2.2.4. GLC_FCS30 Data
2.3. Methodology
2.3.1. Random Forest Algorithm
2.3.2. Multi-Source Data Preprocessing
2.3.3. Sample Pools
- SMAP brightness temperature of AM overpasses (AM TbH/TbV);
- SMAP brightness temperature of PM overpasses (PM TbH/TbV);
- Resampled NDVI (NDVI);
- Resampled land cover derived from MCD12Q1 (LC);
- Resampled land cover derived from GLC_FCS30 (LC’);
- “percentages of the typical land cover classes” in a SMAP pixel derived from MCD12Q1 (Perc_F/S/G/C/B);
- “percentages of the typical land cover classes” in a SMAP pixel derived from GLC_FCS30 (Perc_F’/S’/G’/C’/B’);
- “average NDVIs corresponding to the typical land cover classes” in a SMAP pixel (NDVI_F/S/G/C/B);
- Resampled ERA5-Land modeled SMC.
2.3.4. Input Parameter Combinations
2.3.5. Statistical Metrics
3. Results
3.1. Results of Combinations 1, 2, and 3
3.2. Results of Combinations 4 and 5
3.3. Results of Combinations 6 and 7
3.4. Comparison of Scenarios 1, 2, and 3
4. Discussion
4.1. The Influence of Land Cover Variables as Input Parameters
4.2. The Influence of NDVI Variables as Input Parameter
4.3. The Performances of AM and PM Brightness Temperatures as the Input Parameter
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SMC | Soil Moisture Content |
NDVI | Normalized Difference Vegetation Index |
ubRMSE | Unbiased Root Mean Square Error |
AMSR2 | Advanced Microwave Scanning Radiometer 2 |
AMSR-E | Advanced Microwave Scanning Radiometer-Earth Observing System |
SMOS | Soil Moisture and Ocean Salinity |
SMAP | Soil Moisture Active Passive |
RF | Random Forest |
MWRI | Microwave Radiation Imager |
ASCAT | Advanced Scatterometer |
GLC_FCS30 | Global Land Cover Product with Fine Classification System in 30 m |
ECWMF | European Centre for Medium-Range Weather Forecasts |
NASA | National Aeronautics and Space Administration |
DCA | Dual-Channel Algorithms |
IGBP | International Geosphere–Biosphere Program |
RFI | Radio Frequency Interference |
LC | Land Cover |
LST | Land Surface Temperature |
TVDI | Temperature–Vegetation Dryness Index |
PIML | Physics-Informed Machine Learning |
FFNN | Feed-Forward Neural Network |
PINN | Physics-Informed Neural Networks |
References
- Chen, W.; Li, Z.; Jiao, L.; Wang, C.; Gao, G.; Fu, B. Response of soil moisture to rainfall event in black locust plantations at different stages of restoration in hilly-gully area of the Loess Plateau, China. Chin. Geogr. Sci. 2020, 30, 427–445. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Edokossi, K.; Jin, S.; Mazhar, U.; Molina, I.; Calabia, A.; Ullah, I. Monitoring the drought in Southern Africa from space-borne GNSS-R and SMAP data. Nat. Hazards. 2024, 120, 7947–7967. [Google Scholar] [CrossRef]
- Topp, G.C. The application of time-domain reflectometry (TDR) to soil water content measurement. In Proceedings of the International Conference on Measurement of Soil and Plant Water Status, Utah State University, Logan, UT, USA, 6–10 July 1987. [Google Scholar]
- Reynolds, S.G. The gravimetric method of soil moisture determination Part I A study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Moran, M.S.; Goodrich, D.C.; Kerr, Y.H.; et al. Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the US. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1530–1543. [Google Scholar] [CrossRef]
- Han, L.; Wang, C.; Yu, T.; Gu, X.; Liu, Q. High-precision soil moisture mapping based on multi-model coupling and background knowledge, over vegetated areas using Chinese Gf-3 and GF-1 satellite data. Remote Sens. 2020, 12, 2123. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, K.; Jiang, T.; Li, X.; Zheng, X.; Wan, X.; Zhao, X. Predicting surface roughness and moisture of bare soils using multi-band spectral reflectance under field conditions. Chin. Geogr. Sci. 2018, 28, 986–997. [Google Scholar] [CrossRef]
- Li, Z.L.; Leng, P.; Zhou, C.; Chen, K.S.; Zhou, F.C.; Shang, G.F. Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future. Earth Sci. Rev. 2021, 218, 103673. [Google Scholar] [CrossRef]
- Zeng, J. Soil Moisture Retrieval in the Tibetan Plateau Using Passive Microwave Remote Sensing Observations. Ph.D. Dissertation, Chinese Academy of Sciences, Beijing, China, 2015. [Google Scholar]
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Kim, H.; Wigneron, J.P.; Kumar, S.; Dong, J.; Wagner, W.; Cosh, M.H.; Bosch, D.D.; Collins, C.H.; Starks, P.J.; Seyfried, M.; et al. Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sens. Environ. 2020, 251, 112052. [Google Scholar] [CrossRef]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Schmugge, T.J.; Chang, A.; Newton, R.W. Effect of surface roughness on the microwave. J. Geophys. Res. 1979, 84, 5699–5706. [Google Scholar] [CrossRef]
- Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A model for microwave emission from vegetation-covered fields. J. Geophys. Res. Oceans 1982, 87, 11229–11237. [Google Scholar] [CrossRef]
- Song, P. Improved Surface Soil Moisture Estimation Methods and Their Applications Based on AMSR Radiometers. Ph.D. Dissertation, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Karthikeyan, L.; Pan, M.; Wanders, N.; Kumar, D.N.; Wood, E.F. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Adv. Water Resour. 2017, 109, 106–120. [Google Scholar] [CrossRef]
- Zheng, L.; Wu, M.; Xue, M.; Wu, H.; Liang, F.; Li, X.; Hou, S.; Liu, J. Power of SAR imagery and machine learning in monitoring Ulva Prolifera: A case study of Sentinel-1 and random forest. Chin. Geogr. Sci. 2024, 34, 1134–1143. [Google Scholar] [CrossRef]
- Zhang, S.; Weng, F.; Yao, W. A multivariable approach for estimating soil moisture from Microwave Radiation Imager (MWRI). J. Meteorol. Res. 2020, 34, 732–747. [Google Scholar] [CrossRef]
- Tong, C.; Wang, H.; Magagi, R.; Goïta, K.; Zhu, L.; Yang, M.; Deng, J. Soil moisture retrievals by combining passive microwave and optical data. Remote Sens. 2020, 12, 3173. [Google Scholar] [CrossRef]
- Ma, H.; Zeng, J.; Zhang, X.; Peng, J.; Li, X.; Fu, P.; Cosh, M.H.; Letu, H.; Wang, S.; Chen, N.; et al. Surface soil moisture from combined active and passive microwave observations: Integrating ASCAT and SMAP observations based on machine learning approaches. Remote Sens. Environ. 2024, 308, 114197. [Google Scholar] [CrossRef]
- Meng, Q.; Zhang, L.; Xie, Q.; Yao, S.; Chen, X.; Zhang, Y. Combined use of GF-3 and Landsat-8 satellite data for soil moisture retrieval over agricultural areas using artificial neural network. Adv. Meteorol. 2018, 2018, 9315132. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.; Wei, L.; Wang, W. Multi-scale validation of SMAP soil moisture products over cold and arid regions in northwestern China using distributed ground observation data. Remote Sens. 2017, 9, 327. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Z.; Xue, Z.; Li, H. Sensitive feature evaluation for soil moisture retrieval based on multi-source remote sensing data with few in-situ measurements: A case study of the Continental U.S. Water 2021, 13, 2003. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Z.; Chai, L.; Liu, S.; Montzka, C.; Liu, J.; Yang, X.; Lu, Z.; Jin, R.; Li, X.; et al. Rebuilding a microwave soil moisture product using random forest adopting AMSR-E/AMSR2 brightness temperature and SMAP over the Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 683. [Google Scholar] [CrossRef]
- Bai, X.; Zeng, J.; Chen, K.S.; Li, Z.; Zeng, Y.; Wen, J.; Wang, X.; Dong, X.; Su, Z. Model by integration of global sensitivity analysis using SMAP active and passive observations. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1084–1099. [Google Scholar] [CrossRef]
- Zeng, J.; Shi, P.; Chen, K.S.; Ma, H.; Bi, H.; Cui, C. On the relationship between radar backscatter and radiometer brightness temperature from SMAP. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Ge, L.; Hang, R.; Liu, Y.; Liu, Q. Comparing the performance of neural network and deep convolutional neural network in estimating soil moisture from satellite observations. Remote Sens. 2018, 10, 1327. [Google Scholar] [CrossRef]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 1: Satellite data analysis. Remote Sens. Environ. 2016, 173, 1–14. [Google Scholar] [CrossRef]
- Kolassa, J.; Gentine, P.; Prigent, C.; Aires, F.; Alemohammad, S.H. Soil moisture retrieval from AMSR-E and ASCAT microwave observation synergy. Part 2: Product evaluation. Remote Sens. Environ. 2017, 195, 202–217. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Hu, F.; Wei, Z.; Yang, X.; Xie, W.; Li, Y.; Cui, C.; Yang, B.; Tao, C.; Zhang, W.; Meng, L. Assessment of SMAP and SMOS soil moisture products using triple collocation method over Inner Mongolia. J. Hydrol. Reg. Stud. 2022, 40, 101027. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D.; et al. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Colliander, A.; Reichle, R.H.; Crow, W.T.; Cosh, M.H.; Chan, S.; Das, N.N.; Bindlish, R.; Chaubell, J.; Kim, S.; Liu, Q.; et al. Validation of soil moisture data products from the NASA SMAP mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 15, 364–392. [Google Scholar] [CrossRef]
- Wen, F.; Zhao, W.; Wang, Q.; Sánchez, N. A value-consistent method for downscaling SMAP passive soil moisture with MODIS products using self-adaptive window. IEEE Trans. Geosci. Remote Sens. 2019, 58, 913–924. [Google Scholar] [CrossRef]
- Park, J.Y.; Ahn, S.R.; Hwang, S.J.; Jang, C.H.; Park, G.A.; Kim, S.J. Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling. Paddy Water Environ. 2014, 12, 77–88. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Zappa, L.; Forkel, M.; Xaver, A.; Dorigo, W. Deriving field scale soil moisture from satellite observations and ground measurements in a hilly agricultural region. Remote Sens. 2019, 11, 2596. [Google Scholar] [CrossRef]
- Cui, C.; Xu, J.; Zeng, J.; Chen, K.S.; Bai, X.; Lu, H.; Chen, Q.; Zhao, T. Soil moisture mapping from satellites: An intercomparison of SMAP, SMOS, FY3B, AMSR2, and ESA CCI over two dense network regions at different spatial scales. Remote Sens. 2018, 10, 33. [Google Scholar] [CrossRef]
- Zeng, J.; Shi, P.; Chen, K.S.; Ma, H.; Bi, H.; Cui, C. Assessment and error analysis of satellite soil moisture products over the third pole. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Senyurek, V.; Lei, F.; Boyd, D.; Kurum, M.; Gurbuz, A.C.; Moorhead, R. Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites in CONUS. Remote Sens. 2020, 12, 1168. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, N.; de Rosnay, P.; Albergel, C.; Richaume, P.; Aires, F.; Prigent, C.; Kerr, Y. SMOS Neural Network Soil Moisture Data Assimilation in a Land Surface Model and Atmospheric Impact. Remote Sens. 2019, 11, 1334. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, J.; Liu, J.; Wen, Y.; Wang, Y. Soil Moisture Retrieval Using Microwave Remote Sensing Data and a Deep Belief Network in the Naqu Region of the Tibetan Plateau. Sustainability 2021, 13, 12635. [Google Scholar] [CrossRef]
- Holtgrave, A.K.; Förster, M.; Greifeneder, F.; Notarnicola, C.; Kleinschmit, B. Estimation of soil moisture in vegetation-covered floodplains with sentinel-1 SAR data using support vector regression. PFG–J. Photogram. Remote Sens. Geoinf. Sci. 2018, 86, 85–101. [Google Scholar]
- Liu, Q.; Gu, X.; Chen, X.; Mumtaz, F.; Liu, Y.; Wang, C.; Yu, T.; Zhang, Y.; Wang, D.; Zhan, Y. Soil moisture content retrieval from remote sensing data by artificial neural network based on sample optimization. Sensors 2022, 22, 1611. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Huttl, R. Tillage effects on hydraulic properties and microporosity in silty and sandy soils. Soil Sci. Soc. Am. J. 2006, 70, 1998–2007. [Google Scholar] [CrossRef]
- Vilasan, R.; Kapse, V. Evaluation of the prediction capability of AHP and F-AHP methods in flood susceptibility mapping of Ernakulam district (India). Nat. Hazards 2022, 112, 1767–1793. [Google Scholar] [CrossRef]
- Zha, X.; Xiong, L.; Liu, C.; Shu, P.; Xiong, B. Identification and evaluation of soil moisture flash drought by a nonstationary framework considering climate and land cover changes. Sci. Total Environ. 2023, 856, 158953. [Google Scholar] [CrossRef]
- Guerriero, L.; Ferrazzoli, P.; Vittucci, C.; Rahmoune, R.; Aurizzi, M.; Mattioni, A. L-band passive and active signatures of vegetated soil: Simulations with a unified model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2520–2531. [Google Scholar] [CrossRef]
- Liu, P.W.; Judge, J.; de Roo, R.D.; England, A.W.; Bongiovanni, T. Uncertainty in soil moisture retrievals using the SMAP combined active–passive algorithm for growing sweet corn. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3326–3339. [Google Scholar] [CrossRef]
- Piles, M.; McColl, K.A.; Entekhabi, D.; Das, N.N.; Pablos, M. Sensitivity of Aquarius active and passive measurements temporal covariability to land surface characteristics. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4700–4711. [Google Scholar] [CrossRef]
- Zucco, G.; Brocca, L.; Moramarco, T.; Morbidelli, R. Influence of land use on soil moisture spatial–temporal variability and monitoring. J. Hydrol. 2014, 516, 193–199. [Google Scholar] [CrossRef]
- Fu, B.; Wang, J.; Chen, L.; Qiu, Y. The effects of land use on soil moisture variation in the Danangou catchment of the Loess Plateau, China. Catena 2003, 54, 197–213. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Yueh, S.; Jagdhuber, T.; Crow, W.; O’Neill, P.E.; Walker, J.P. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Ye, N.; Walker, J.P.; Gao, Y.; PopStefanija, I.; Hills, J. Comparison between thermal-optical and L-band passive microwave soil moisture remote sensing at farm scales: Towards UAV-based near-surface soil moisture mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 633–642. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.; Zhao, Y. Estimating Soil Moisture Conditions of the Greater Changbai Mountains by Land Surface Temperature and NDVI. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2509–2515. [Google Scholar]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Kolassa, J.; Reichle, R.H.; Liu, Q.; Alemohammad, S.H.; Gentine, P.; Aida, K.; Asanuma, J.; Bircher, S.; Caldwell, T.; Colliander, A.; et al. Estimating surface soil moisture from SMAP observations using a Neural Network technique. Remote Sens. Environ. 2018, 204, 43–59. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Chen, L. A Two-Step Reconstruction Approach for High-Resolution Soil Moisture Estimates from Multi-Source Data. Water 2025, 17, 819. [Google Scholar] [CrossRef]
- Singh, A.; Gaurav, K. PIML-SM: Physics-Informed Machine Learning to Estimate Surface Soil Moisture From Multisensor Satellite Images by Leveraging Swarm Intelligence. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–13. [Google Scholar] [CrossRef]
- Chavoshi, A.; Dashtian, H.; Bakhshian, S.; Young, M.H.; Niyogi, D. PINN-SM: A Physics-Informed Neural Networks Model for Vadose Zone Soil Moisture Profile Prediction. arXiv 2024. [Google Scholar] [CrossRef]
MCD12Q1 IGBP Classes | Reclassified Typical Classes |
---|---|
Evergreen Needleleaf Forests | Forests |
Evergreen Broadleaf Forests | |
Deciduous Needleleaf Forests | |
Deciduous Broadleaf Forests | |
Mixed Forests | |
Closed Shrublands | Shrublands |
Open Shrublands | |
Woody Savannas | Grasslands |
Savannas | |
Grasslands | |
Croplands | Croplands |
Cropland/Natural Vegetation Mosaics | |
Barren | Barren |
Permanent Wetlands (Eliminated) Urban and Built-up Lands (Eliminated) | Others (Eliminated) |
Water Bodies (Eliminated) | |
Permanent Snow and Ice (Eliminated) |
GLC_FCS30 Classes | Reclassified Typical Classes |
---|---|
Open evergreen broad-leaved forest | Forests |
Closed evergreen broad-leaved forest | |
Open deciduous broad-leaved forest | |
Closed deciduous broad-leaved forest | |
Open evergreen needle-leaved forest | |
Closed evergreen needle-leaved forest | |
Open deciduous needle-leaved forest | |
Closed deciduous needle-leaved forest | |
Open mixed-leaf forest | |
Closed mixed-leaf forest | |
Shrubland | Shrublands |
Evergreen shrubland | |
Deciduous shrubland | |
Grassland | Grasslands |
Lichens and mosses | |
Rainfed cropland | Croplands |
Herbaceous cover | |
Tree or shrub cover (orchard) | |
Irrigated cropland | |
Sparse vegetation | Barren |
Sparse shrubland | |
Sparse herbaceous | |
Bare areas | |
Consolidated bare areas | |
Unconsolidated bare areas | |
Wetlands (eliminated) | Others (eliminated) |
Impervious surfaces (eliminated) | |
Water body (eliminated) | |
Permanent ice and snow (eliminated) |
Scenario | Method of Stacking | SMAP Tb Data | Number of Samples |
---|---|---|---|
1 | Stack 1 | AM overpasses | 956,677 |
2 | Stack 2 | PM overpasses | 972,188 |
3 | Stack 1 and Stack 2 | AM and PM overpasses | 1,928,865 |
Combination | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Input Parameters | TbH TbV | TbH TbV | TbH TbV | TbH TbV | TbH TbV | TbH TbV | TbH TbV |
NDVI | NDVI | NDVI | NDVI | NDVI | NDVI_F NDVI_S NDVI_G NDVI_C NDVI_B | NDVI_F NDVI_S NDVI_G NDVI_C NDVI_B | |
LC | LC’ | Perc_F Perc_S Perc_G Perc_C Perc_B | Perc_F’ Perc_S’ Perc_G’ Perc_C’ Perc_B’ | Perc_F’ Perc_S’ Perc_G’ Perc_C’ Perc_B’ |
r | Combination 1 | Combination 2 | Combination 3 | Combination 4 | Combination 5 | Combination 6 | Combination 7 |
---|---|---|---|---|---|---|---|
Scenario 1 | 0.797 | 0.813 | 0.817 | 0.826 | 0.897 | 0.816 | 0.909 |
Scenario 2 | 0.805 | 0.823 | 0.825 | 0.837 | 0.903 | 0.828 | 0.914 |
Scenario 3 | 0.796 | 0.813 | 0.816 | 0.834 | 0.910 | 0.819 | 0.923 |
ubRMSE (cm3cm−3) | Combination 1 | Combination 2 | Combination 3 | Combination 4 | Combination 5 | Combination 6 | Combination 7 |
---|---|---|---|---|---|---|---|
Scenario 1 | 0.0761 | 0.0733 | 0.0726 | 0.0709 | 0.0557 | 0.0726 | 0.0526 |
Scenario 2 | 0.0757 | 0.0726 | 0.0722 | 0.0696 | 0.0551 | 0.0715 | 0.0522 |
Scenario 3 | 0.0767 | 0.0738 | 0.0733 | 0.0700 | 0.0528 | 0.0726 | 0.0490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Du, H.; Zhan, Y.; Mumtaz, F. Soil Moisture Retrieval in North America with Passive Microwave and Auxiliary Data Based on Variable Spatial Optimization. Water 2025, 17, 1604. https://doi.org/10.3390/w17111604
Liu Q, Du H, Zhan Y, Mumtaz F. Soil Moisture Retrieval in North America with Passive Microwave and Auxiliary Data Based on Variable Spatial Optimization. Water. 2025; 17(11):1604. https://doi.org/10.3390/w17111604
Chicago/Turabian StyleLiu, Qixin, Huishi Du, Yulin Zhan, and Faisal Mumtaz. 2025. "Soil Moisture Retrieval in North America with Passive Microwave and Auxiliary Data Based on Variable Spatial Optimization" Water 17, no. 11: 1604. https://doi.org/10.3390/w17111604
APA StyleLiu, Q., Du, H., Zhan, Y., & Mumtaz, F. (2025). Soil Moisture Retrieval in North America with Passive Microwave and Auxiliary Data Based on Variable Spatial Optimization. Water, 17(11), 1604. https://doi.org/10.3390/w17111604