Climate Change and Hydrological Processes
1. Introduction
2. Main Contributions to the Special Issue
3. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Babaousmail, H.; Ojara, M.A. Evaluation of Historical Dry and Wet Periods over Lake Kyoga Basin in Uganda. Water 2025, 17, 1044. https://doi.org/10.3390/w17071044.
- Xu, M.; Chen, Y.; Liu, D.; Qi, P.; Sun, Y.; Guo, L.; Zhang, G. Characteristics of Runoff Changes during the Freeze–Thaw Period and the Response to Environmental Changes in a High-Latitude Water Tower. Water 2024, 16, 2735. https://doi.org/10.3390/w16192735.
- Zheng, J.; Wu, N.; Ren, P.; Deng, W.; Zhang, D. Multiscale Factors Driving Extreme Flooding in China’s Pearl River Basin During the 2022 Dragon Boat Precipitation Season. Water 2025, 17, 1013. https://doi.org/10.3390/w17071013.
- Chen, S.; Yang, H.; Zheng, H. Intercomparison of Runoff and River Discharge Reanalysis Datasets at the Upper Jinsha River, an Alpine River on the Eastern Edge of the Tibetan Plateau. Water 2025, 17, 871. https://doi.org/10.3390/w17060871.
- Moges, D.M.; Virro, H.; Kmoch, A.; Cibin, R.; Rohith, R.A.N.; Martínez-Salvador, A.; Conesa-García, C.; Uuemaa, E. Streamflow Prediction with Time-Lag-Informed Random Forest and Its Performance Compared to SWAT in Diverse Catchments. Water 2024, 16, 2805. https://doi.org/10.3390/w16192805.
- Costache, R.; Crăciun, A.; Ciobotaru, N.; Bărbulescu, A. Intelligent Methods for Estimating the Flood Susceptibility in the Danube Delta, Romania. Water 2024, 16, 3511. https://doi.org/10.3390/w16233511.
- Stancu, M.V.; Cheveresan, M.I.; Sârbu, D.; Maizel, A.; Soare, R.; Bărbulescu, A.; Dumitriu, C.Ș. Influence of Marine Currents, Waves, and Shipping Traffic on Sulina Channel Fairway at the Mouth of the Black Sea. Water 2024, 16, 2779. https://doi.org/10.3390/w16192779.
- Almheiri, K.B.; Rustum, R.; Wright, G.; Adeloye, A.J. The Necessity of Updating IDF Curves for the Sharjah Emirate, UAE: A Comparative Analysis of 2020 IDF Values in Light of Recent Urban Flooding (April 2024). Water 2024, 16, 2621. https://doi.org/10.3390/w16182621.
- Dimond, J.; Roose, W.; Beevers, L. Making Different Decisions: Demonstrating the Influence of Climate Model Uncertainty on Adaptation Pathways. Water 2025, 17, 1366. https://doi.org/10.3390/w17091366.
- Nowak, B.; Dumieński, G.; Ławniczak-Malińska, A. Water Management Instructions as an Element of Improving the State of the Pakoski Reservoir (Central–Western Poland). Water 2025, 17, 403. https://doi.org/10.3390/w17030403.
- Nardini, A.G.C.; Escobar Villanueva, J.R.; Pérez-Montiel, J.I. Hydrological Monitoring System of the Navío-Quebrado Coastal Lagoon (Colombia): A Very Low-Cost, High-Value, Replicable, Semi-Participatory Solution with Preliminary Results. Water 2024, 16, 2248. https://doi.org/10.3390/w16162248.
References
- IPCC. Sixth Assessment Report (AR6). Intergovernmental Panel on Climate Change, 2021. Available online: https://www.ipcc.ch/assessment-report/ar6/ (accessed on 1 May 2025).
- Bărbulescu, A.; Dumitriu, C.S.; Maftei, C. On the Probable Maximum Precipitation Method. Rom. J. Phys. 2022, 67, 1–8. [Google Scholar]
- Lindersson, S.; Brandimarte, L.; Mård, J.; Di Baldassarre, G. A review of freely accessible global datasets for the study of floods, droughts and their interactions with human societies. Wiley Interdiscip. Rev. Water 2020, 7, e1424. [Google Scholar] [CrossRef]
- Payne, A.E.; Demory, M.E.; Leung, L.R.; Ramos, A.M.; Shields, C.A.; Rutz, J.J.; Siler, N.; Villarini, G.; Hall, A.; Ralph, F.M. Responses and impacts of atmospheric rivers to climate change. Nat. Rev. Earth Environ. 2020, 1, 143–157. [Google Scholar] [CrossRef]
- Hattermann, F.F.; Krysanova, V. Impact attribution: Exploring the contribution of climate change to recent trends in hydrological processes—An editorial introduction. Clim. Chang. 2024, 177, 172. [Google Scholar] [CrossRef]
- Terskii, P.N.; Kuleshov, A.A.; Chalov, S.R. Water Balance Assessment Using Swat Model. Case Study on Russian Subcatchment of Western Dvina River. In Climate Change Impacts on Hydrological Processes and Sediment Dynamics: Measurement, Modelling and Management; Chalov, S., Golosov, V., Li, R., Tsyplenkov, A., Eds.; Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2019; pp. 83–87. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, L.; Tang, Z. Multi-temporal scale changes of streamflow and sediment discharge in the headwaters of Yellow River and Yangtze River on the Tibetan Plateau, China. Ecol. Eng. 2017, 102, 240–254. [Google Scholar] [CrossRef]
- Huang, S.C.; Kumar, R.; Rakovec, O.; Aich, V.; Wang, X.Y.; Samaniego, L.; Liersch, S.; Krysanova, V. Multimodel assessment of flood characteristics in four large river basins at global warming of 1.5, 2.0 and 3.0 K above the preindustrial level. Environ. Res. Lett. 2018, 13, 124005. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Climate change impacts on the hydrological cycle. Ecohydrol. Hydrobiol. 2008, 8, 195–203. [Google Scholar] [CrossRef]
- Wang, Q.; Deng, H.; Jian, J. Hydrological Processes under Climate Change and Human Activities: Status and Challenges. Water 2023, 15, 4164. [Google Scholar] [CrossRef]
- Clarke, B.J.; Otto, F.E.; Jones, R.G. Inventories of extreme weather events and impacts: Implications for loss and damage from and adaptation to climate extremes. Clim. Risk Manag. 2021, 32, 100285. [Google Scholar] [CrossRef]
- Xue, P.; Zhang, C.; Wen, Z.; Yu, F.; Park, E.; Nourani, V. Climate variability impacts on runoff projection in the 21st century based on the applicability assessment of multiple GCMs: A case study of the Lushi Basin, China. J. Hydrol. 2024, 638, 131383. [Google Scholar] [CrossRef]
- Bărbulescu, A. Modeling the impact of the human activity, behavior and decisions on the environment. Marketing and green consumer. J. Environ. Manag. 2017, 204 Pt 3, 813. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Barbeş, L. Statistical methods for assessing water quality after treatment on a sequencing batch reactor. Sci. Total Environ. 2021, 752, 141991. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, J. Water Resources and Sustainable Development. Water 2024, 16, 134. [Google Scholar] [CrossRef]
- Brown, C.; Boltz, F.; Freeman, S.; Tront, J.; Rodriguez, D. Resilience by design: A deep uncertainty approach for water systems in a changing world. Water Secur. 2020, 9, 100051. [Google Scholar] [CrossRef]
- Herman, J.D.; Quinn, J.D.; Steinschneider, S.; Giuliani, M.; Fletcher, S. Climate adaptation as a control problem: Review and perspectives on dynamic water resources planning under uncertainty. Water Resour. Res. 2020, 56, e24389. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Costache, R.; Dumitriu, C.Ș. Climate Change and Hydrological Processes. Water 2025, 17, 1474. https://doi.org/10.3390/w17101474
Bărbulescu A, Costache R, Dumitriu CȘ. Climate Change and Hydrological Processes. Water. 2025; 17(10):1474. https://doi.org/10.3390/w17101474
Chicago/Turabian StyleBărbulescu, Alina, Romulus Costache, and Cristian Ștefan Dumitriu. 2025. "Climate Change and Hydrological Processes" Water 17, no. 10: 1474. https://doi.org/10.3390/w17101474
APA StyleBărbulescu, A., Costache, R., & Dumitriu, C. Ș. (2025). Climate Change and Hydrological Processes. Water, 17(10), 1474. https://doi.org/10.3390/w17101474