A Novel Double-Coated Persulfate Slow-Release Material: Preparation and Application for the Removal of Antibiotics from Groundwater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Slow-Release Materials
2.3. Preparation of Iron–Nitrogen Co-Doped Biochar (Fe@N-BC)
2.4. Slow-Release and Degradation Performance Testing
2.4.1. Static Release Experiment
2.4.2. Batch Static Degradation Experiments
2.4.3. Identification of Reactive Species
2.4.4. Dynamic Sand Column Release Experiment
2.4.5. Dynamic Sand Column Degradation Experiment
2.5. Determination of Persulfate, Antibiotics, and Degradation Intermediates
2.6. Material Characterization
3. Results and Discussion
3.1. Optimal Formulation of Double-Coated Persulfate Slow-Release Materials
3.1.1. Persulfate Release Performance of Inner Layer Materials with Different Formulations
3.1.2. Release Characteristics of Double-Coated Slow-Release Materials with Different Outer-Layer Material Ratios
3.1.3. Release Characteristics of Double-Coated Slow-Release Materials with Different Outer-Layer Thicknesses
3.2. Degradation of SMZ and CIP in Water by Double-Coated Persulfate Slow-Release Materials
3.2.1. Effect of Catalyst Concentration on Pollutant Degradation
3.2.2. Effect of Initial SMZ and CIP Concentration on Pollutant Degradation
3.2.3. Effect of Initial pH on Pollutant Degradation
3.2.4. Effect of Humic Acid Concentration on Pollutant Degradation
3.2.5. Effect of Anion Concentration on Pollutant Degradation
3.3. Release Characteristics of Persulfate Slow-Release Materials in One-Dimensional Columns
3.3.1. Influence of Flow Rate on Release Characteristics of Persulfate Slow-Release Material in One-Dimensional Columns
3.3.2. Influence of Medium Permeability on the Release Characteristics of Persulfate Slow-Release Material in One-Dimensional Columns
3.4. Oxidative Degradation of SMZ and CIP by Double-Coated Persulfate Slow-Release Material in One-Dimensional Sand Columns
3.4.1. Influence of Groundwater Flow Velocity on SMZ and CIP Degradation
3.4.2. Effect of Quartz Sand Mesh on SMZ and CIP Degradation
3.4.3. Effect of Initial Antibiotic Concentration on SMZ and CIP Degradation
3.5. SMZ and CIP Degradation Mechanism in the Fe@N-BC-Activated Persulfate System
3.5.1. Identification of Active Species
3.5.2. SMZ and CIP Degradation Products and Pathways in the Fe@N-BC-Activated Persulfate System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Liu, C.; Chen, J.; Shan, X.; Yang, Y.; Song, L.; Teng, Y.; Chen, H. Meta-analysis addressing the characterization and risk identification of antibiotics and antibiotic resistance genes in global groundwater. Sci. Total Environ. 2022, 860, 160513. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Hou, Q.; Song, J.; Liu, R.; Qian, Y.; Huang, G. Groundwater antibiotics contamination in an alluvial-pluvial fan, North China Plain: Occurrence, sources, and risk assessment. Environ. Res. 2023, 235, 116653. [Google Scholar] [CrossRef] [PubMed]
- Zainab, S.M.; Junaid, M.; Xu, N.; Malik, R.N. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. Water Res. 2020, 187, 116455. [Google Scholar] [CrossRef]
- Zhao, B.; Sun, Z.; Liu, Y. An overview of in-situ remediation for nitrate in groundwater. Sci. Total Environ. 2021, 804, 149981. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. Chem. Eng. J. 2023, 466, 143147. [Google Scholar] [CrossRef]
- Lin, D.; Fu, Y.; Li, X.; Wang, L.; Hou, M.; Hu, D.; Li, Q.; Zhang, Z.; Xu, C.; Qiu, S.; et al. Application of persulfate-based oxidation processes to address diverse sustainability challenges: A critical review. J. Hazard. Mater. 2022, 440, 129722. [Google Scholar] [CrossRef]
- Honetschlägerová, L.; Martinec, M.; Škarohlíd, R. Coupling in situ chemical oxidation with bioremediation of chloroethenes: A review. Rev. Environ. Sci. Bio/Technol. 2019, 18, 699–714. [Google Scholar] [CrossRef]
- Silva, J.A.K.; Crimi, M.; Palaia, T.; Ko, S.; Davenport, S. Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO). J. Contam. Hydrol. 2017, 199, 36–49. [Google Scholar] [CrossRef]
- Ranc, B.; Faure, P.; Croze, V.; Simonnot, M.O. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 2016, 312, 280–297. [Google Scholar] [CrossRef]
- Watts, R.J.; Ahmad, M.; Hohner, A.K.; Teel, A.L. Persulfate activation by glucose for in situ chemical oxidation. Water Res. 2018, 133, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.-H.; Ma, J.; Xi, B.-D.; Yu, M.-D.; Cui, J.; Chen, B.-L.; Li, Y.; Gu, Q.-B.; He, X.-S. Recent progress on in-situ chemical oxidation for the remediation of petroleum contaminated soil and groundwater. J. Hazard. Mater. 2022, 432, 128738. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Feng, Y.; Feng, Y.; Liao, G.; Sun, Y.; Ma, J. Characteristics and mechanisms of controlled-release KMnO4 for groundwater remediation: Experimental and modeling investigations. Water Res. 2019, 171, 115385. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Zang, J.; Wang, Y.; Yu, Y.; Lu, J.; Xu, X. Comparison study of Fe-based matrix composites reinforced with Ti-coated and Mo-coated SiC particles. Mater. Chem. Phys. 2018, 204, 154–162. [Google Scholar] [CrossRef]
- Lalhriatpuia, C.; Ralte, L.; Dihingia, H.; Tiwari, D. Novel biochar supported heterojunction of RH-BC (Fe0/Au0) catalyst: A highly efficient catalyst in the degradation of micro-pollutants. J. Environ. Chem. Eng. 2023, 11, 110945. [Google Scholar] [CrossRef]
- Li, X.; Jia, Y.; Zhou, M.; Su, X.; Sun, J. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation. J. Hazard. Mater. 2020, 397, 122764. [Google Scholar] [CrossRef]
- Mei, Y.; Xu, J.; Zhang, Y.; Li, B.; Fan, S.; Xu, H. Effect of Fe–N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution. Bioresour. Technol. 2021, 325, 124732. [Google Scholar] [CrossRef]
- Tang, Q.; Meng, X.; Bao, W.; Fan, Y.; Gao, Y.; Sun, Y.; Liu, H. Synergistic activation of peroxymonosulfate by nitrogen-doped biochar loaded with mixed-valence iron nanoparticles for tetracycline degradation. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 669. [Google Scholar] [CrossRef]
- Wang, A.; Wu, M.; Li, Z.; Zhou, Y.; Zhu, F.; Huang, Z. Utilizing different types of biomass materials to modify steel slag for the preparation of composite materials used in the adsorption and solidification of Pb in solutions and soil. Sci. Total. Environ. 2024, 914, 170023. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Wang, Z.; Zhu, L.; Liu, X.; Wang, Y.; Sun, Y. Degradation of PAHs in soil by activated persulfate system with activated carbon supported iron-based bimetal. Sci. Total. Environ. 2023, 866, 161323. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, N.; Yang, Y.; Li, J.; Wang, S.; Lv, J.; Tang, R. Novel carbothermal synthesis of Fe, N co-doped oak wood biochar (Fe/N-OB) for fast and effective Cr(VI) removal. Colloids Surf. A Physicochem. Eng. Asp. 2020, 600, 124926. [Google Scholar] [CrossRef]
- Xu, X.; Wan, S.; Xia, F.; Han, X.; Deng, S.; Xiao, H.; Jiang, Y.; Liu, H.; Yang, Y. Preparation and properties of the persulfate gel materials and application for the remediation of 2,4-dinitrotoluene contaminated groundwater. Sci. Total Environ. 2022, 843, 157023. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.J.; Dugan, P.; Nguyen, D.; Lamar, M.; Crimi, M. Slow-release permanganate versus unactivated persulfate for long-term in situ chemical oxidation of 1,4-dioxane and chlorinated solvents. Chemosphere 2019, 221, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.T.; Federico-Perez, R.A.; Fine, K.L.; Matzek, L.W.; Carter, K.E.; Palomino, A.M.; Xue, Z.-L. Sustained release of persulfate from inert inorganic materials for groundwater remediation. Chemosphere 2020, 259, 127508. [Google Scholar] [CrossRef]
- Tang, X.; Yu, C.; Lei, Y.; Wang, Z.; Wang, C.; Wang, J. A novel chitosan-urea encapsulated material for persulfate slow-release to degrade organic pollutants. J. Hazard. Mater. 2021, 426, 128083. [Google Scholar] [CrossRef]
- Wang, T.; Xu, K.-M.; Yan, K.-X.; Wu, L.-G.; Chen, K.-P.; Wu, J.-C.; Chen, H.-L. Comparative study of the performance of controlled release materials containing mesoporous MnOx in catalytic persulfate activation for the remediation of tetracycline contaminated groundwater. Sci. Total Environ. 2022, 846, 157217. [Google Scholar] [CrossRef]
- Liang, C.; Chen, C.-Y. Characterization of a Sodium Persulfate Sustained Release Rod for in Situ Chemical Oxidation Groundwater Remediation. Ind. Eng. Chem. Res. 2017, 56, 5271–5276. [Google Scholar] [CrossRef]
- Chokejaroenrat, C.; Sakulthaew, C.; Satapanajaru, T.; Tikhamram, T.; Pho-Ong, A.; Mulseesuk, T. Treating Methyl Orange in a Two-Dimensional Flow Tank byIn SituChemical Oxidation Using Slow-Release Persulfate Activated with Zero-Valent Iron. Environ. Eng. Sci. 2015, 32, 1007–1015. [Google Scholar] [CrossRef]
- Ma, J.; Ma, Y.; Rong, X.; Song, Q.; Wu, B.; Lan, X.; Feng, Y.; Qiu, X.; Zhang, P. Persulfate-based controlled release beads for in situ chemical oxidation of common organic pollutants. J. Environ. Chem. Eng. 2021, 9, 105627. [Google Scholar] [CrossRef]
- Zhu, X.; Ji, H.; Hua, G.; Zhou, L. Dynamic Release Characteristics and Kinetics of a Persulfate Sustained-Release Material. Toxics 2023, 11, 829. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Kuo, H.-W.; Sharma, V.K.; Den, W. Chitosan Encapsulation of FerrateVI for Controlled Release to Water:Mechanistic Insights and Degradation of Organic Contaminant. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.; Chen, J.; Dong, H.; Qiao, J.; Zhou, B.; Sun, Y.; Guan, X. Enhanced Oxidation of Organic Contaminants by Mn(VII)/CaSO3 Under Environmentally Relevant Conditions: Performance and Mechanisms. Water Res. 2020, 188, 116481. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Zhang, X.; Jing, Y.; Du, X.; Zhang, Z.; Tan, C. Review on Research and Application of Enhanced In-Situ Bioremediation Agents for Organic Pollution Remediation in Groundwater. Water 2024, 16, 456. [Google Scholar] [CrossRef]
- Li, H.; Wang, N.; Zhang, L.; Wei, Y.; Zhang, L.; Ma, Y.; Ruso, J.M.; Liu, Z. Engineering and slow-release properties of lignin-based double-layer coated fertilizer. Polym. Adv. Technol. 2023, 34, 2029–2043. [Google Scholar] [CrossRef]
- Xing, Y.; Zhang, D.; Cai, L.; Xie, Y.; Wang, L.; Li, Q.; Hua, Y. An Innovative Double-Layer Microsphere Used as Slow-Release Carbon Source for Biological Denitrification. Water Air Soil Pollut. 2020, 231, 1–12. [Google Scholar] [CrossRef]
- Ahmad, S.; Liu, L.; Zhang, S.; Tang, J. Nitrogen-doped Biochar (N-doped BC) and Iron/Nitrogen Co-doped Biochar (Fe/N co-doped BC) for Removal of Refractory Organic Pollutants. J. Hazard. Mater. 2023, 446, 130727. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Liu, T.; Shi, Y.; Ding, Y.; Zhang, Y.; Xu, W.; Zhang, X.; Wang, Y.; Li, D. A biodegradable chitosan-based polymer for sustained nutrient release to stimulate groundwater hydrocarbon-degrading microflora. Chemosphere 2023, 344, 140346. [Google Scholar] [CrossRef]
- Manickam, S.; Sivakumar, S.; Ramasamy, R. Synthesis of Different Nano-layer Shells (Mono-, Bi-, and Alloy Layers)-Coated Gold Spherical Nanoparticles Core for Catalysis. ChemistrySelect 2023, 8, e202203389. [Google Scholar] [CrossRef]
- Nguyen, T.-M.; Chen, H.-H.; Chang, Y.-C.; Ning, T.-C.; Chen, K.-F. Remediation of groundwater contaminated with trichloroethylene (TCE) using a long-lasting persulfate/biochar barrier. Chemosphere 2023, 333, 138954. [Google Scholar] [CrossRef]
- Tian, K.; Shi, F.; Cao, M.; Zheng, Q.; Zhang, G. A Review of Persulfate Activation by Magnetic Catalysts to Degrade Organic Contaminants: Mechanisms and Applications. Catalysts 2022, 12, 1058. [Google Scholar] [CrossRef]
- Ji, Y.; Ferronato, C.; Salvador, A.; Yang, X.; Chovelon, J.-M. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics. Sci. Total Environ. 2013, 472, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Ghulam Abbas, A.; Raqiqa Tur, R.; Jing, C.; Lianjie, L.; Muhammad, H.; Jazib, A.; Lanting, Z.; Hai, G. Novel LaCr substituted Mhexaferrite photocatalyst for decontamination of organic pollutants by peroxymonosulfate activation. J. Mol. Liq. 2021, 345, 117840. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, T.; Liu, H.; Chen, D.; Zou, X.; Wang, H.; Sun, F.; Zhai, P.; Xia, M.; Liu, M. Degradation of norfloxacin by calcite activating peroxymonosulfate: Performance and mechanism. Chemosphere 2021, 282, 131091. [Google Scholar] [CrossRef] [PubMed]
- Furman, O.S.; Teel, A.L.; Watts, R.J. Mechanism of base activation of persulfate. Environ. Sci. Technol. 2010, 44, 6423–6428. [Google Scholar] [CrossRef]
- Liang, C.; Wang, Z.-S.; Bruell, C.J. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 2006, 66, 106–113. [Google Scholar] [CrossRef]
- Acero, J.L.; Benítez, F.J.; Real, F.J.; Rodríguez, E. Degradation of selected emerging contaminants by UV-activated persulfate: Kinetics and influence of matrix constituents. Sep. Purif. Technol. 2018, 201, 41–50. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Zhang, Q.; Xu, D.; Liu, Y.; Ma, F.; Gu, Q.; Li, F. Mechanisms on the impacts of humic acids on persulfate/Fe2+-based groundwater remediation. Chem. Eng. J. 2019, 378, 122142. [Google Scholar] [CrossRef]
- Wang, W.; Jia, J.; Zhang, B.; Xiao, B.; Yang, H.; Zhang, S.; Gao, X.; Han, Y.; Zhang, S.; Liu, Z.; et al. A review of Sustained release materials for remediation of organically contaminated groundwater: Material preparation, applications and prospects for practical application. J. Hazard. Mater. Adv. 2024, 13, 100393. [Google Scholar] [CrossRef]
- Ahmed, N.; Vione, D.; Rivoira, L.; Carena, L.; Castiglioni, M.; Bruzzoniti, M.C. A Review on the Degradation of Pollutants by Fenton-Like Systems Based on Zero-Valent Iron and Persulfate: Effects of Reduction Potentials, pH, and Anions Occurring in Waste Waters. Molecules 2021, 26, 4584. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Braun, A.M. Vuv Photolysis of Aqueous Solutions of Nitrate and Nitrite. Res. Chem. Intermed. 1995, 21, 837–859. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Xie, R.; Wang, M.; Li, W.; Song, J. Degradation of 2-Chlorophenol in Aqueous Solutions Using Persulfate Activated by Biochar Supported Sulfide-Modified Nanoscale Zero-Valent Iron: Performance and Mechanisms. Water 2023, 15, 2805. [Google Scholar] [CrossRef]
- Rayaroth, M.P.; Boczkaj, G.; Aubry, O.; Aravind, U.K.; Aravindakumar, C.T. Advanced Oxidation Processes for Degradation of Water Pollutants—Ambivalent Impact of Carbonate Species: A Review. Water 2023, 15, 1615. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J. Radiation-induced degradation of sulfamethoxazole in the presence of various inorganic anions. Chem. Eng. J. 2018, 351, 688–696. [Google Scholar] [CrossRef]
- Duan, P.; Liu, X.; Liu, B.; Akram, M.; Li, Y.; Pan, J.; Yue, Q.; Gao, B.; Xu, X. Effect of phosphate on peroxymonosulfate activation: Accelerating generation of sulfate radical and underlying mechanism. Appl. Catal. B Environ. 2021, 298, 120532. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, A.; Gan, Y.; Li, X. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions. Sci. Total Environ. 2016, 548–549, 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Wei, L.; Zhang, D.; Tang, L.; Liu, Y.; Jing, L.; Liu, J.; Yang, S. The effects of inorganic anions on degradation kinetics and isotope fractionation during the transformation of tris(2-chloroethyl) phosphate (TCEP) by UV/persulfate. Sci. Total Environ. 2022, 846, 157462. [Google Scholar] [CrossRef]
- Liang, S.H.; Kao, C.M.; Kuo, Y.C.; Chen, K.F. Application of persulfate-releasing barrier to remediate MTBE and benzene contaminated groundwater. J. Hazard. Mater. 2010, 185, 1162–1168. [Google Scholar] [CrossRef]
- Abbas, H.A.; Boskany, N.W.; Ghafoor, K.Z.; Rawat, D.B. Wi-Fi Based Accurate Indoor Localization System using SVM and LSTM Algorithms. In Proceedings of the 2021 IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI), Las Vegas, NV, USA, 10–12 August 2021; pp. 416–422. [Google Scholar]
- Yang, Y.; Xu, X.; Xia, F.; Wan, S.; Han, X.; Xiao, H.; Deng, S.; Jiang, Y.; Li, X. Characteristics of persulfate gel materials in groundwater remediation: Column and tank experiments investigations. Sci. Total Environ. 2023, 892, 164408. [Google Scholar] [CrossRef]
- Barcelona, M.J.; Xie, G. In Situ Lifetimes and Kinetics of a Reductive Whey Barrier and an Oxidative ORC Barrier in the Subsurface. Environ. Sci. Technol. 2001, 35, 3378–3385. [Google Scholar] [CrossRef]
- Chen, H.; Lu, J.; Wu, L.; Wang, T.; Liu, Z.; Wang, C.; Yan, K. Developing a new controlled-release KMnO4 for groundwater DNAPL remediation. Environ. Technol. Innov. 2021, 24, 102064. [Google Scholar] [CrossRef]
- Chen, J.; Ma, H.; Luo, H.; Peng, H.; Yan, Q.; Pu, S. Influencing factors and controlled release kinetics of H2O2 from PVP-coated calcium peroxide NPs for groundwater remediation. J. Hazard. Mater. 2024, 464, 132902. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Song, Y.; Sarmah, A.K.; Li, X.; Tack, F.M.G. Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. J. Control. Release 2018, 283, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wu, G.; Li, N.; Lu, X.; Zhao, J.; He, M.; Yan, B.; Zhang, H.; Duan, X.; Wang, S. Landfill leachate treatment by persulphate related advanced oxidation technologies. J. Hazard. Mater. 2021, 418, 126355. [Google Scholar] [CrossRef]
- Tian, K.; Hu, L.; Li, L.; Zheng, Q.; Xin, Y.; Zhang, G. Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chin. Chem. Lett. 2021, 33, 4461–4477. [Google Scholar] [CrossRef]
- Song, W.; Li, J.; Wang, Z.; Zhang, X. A mini review of activated methods to persulfate-based advanced oxidation process. Water Sci. Technol. 2018, 79, 573–579. [Google Scholar] [CrossRef]
- Luo, J.; Yi, Y.; Ying, G.; Fang, Z.; Zhang, Y. Activation of persulfate for highly efficient degradation of metronidazole using Fe(II)-rich potassium doped magnetic biochar. Sci. Total Environ. 2021, 819, 152089. [Google Scholar] [CrossRef]
- Kim, C.; Ahn, J.-Y.; Kim, T.Y.; Shin, W.S.; Hwang, I. Activation of Persulfate by Nanosized Zero-Valent Iron (NZVI): Mechanisms and Transformation Products of NZVI. Environ. Sci. Technol. 2018, 52, 3625–3633. [Google Scholar] [CrossRef]
- Ding, D.; Liu, C.; Ji, Y.; Yang, Q.; Chen, L.; Jiang, C.; Cai, T. Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway. Chem. Eng. J. 2016, 308, 330–339. [Google Scholar] [CrossRef]
- Wu, H.; Gao, Y.; Xu, X.; Li, X.; Cui, J.; Lin, A. Efficient activation of peroxydisulfate by FeNC for chloramphenicol degradation: Performance and mechanisms. J. Clean. Prod. 2022, 380, 134981. [Google Scholar] [CrossRef]
- Adam, K.; Elżbieta, G.; Kamila, S.; Marcin, F.; Piotr, P.; Piotr, K.; Michał, C. The development of novel tailor-made photocatalytic reactor for sulfamethoxazole removal: Understanding mechanism and degradation pathway. Chem. Eng. J. 2023, 473, 145168. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, S.; Zuo, X.; Li, X.; Deng, X.; Wang, G.; Ding, D.; Wang, C.; Yan, J.; Wang, X. ZIF-8-derived nitrogen-doped porous carbon supported CuFeO2 for sulfamethoxazole removal: Performances, degradation pathways and mechanisms. J. Environ. Chem. Eng. 2023, 11, 109587. [Google Scholar] [CrossRef]
- Wang, K.; Yu, X.; Liu, Z.; Zhang, T.; Ma, Y.; Niu, J.; Yao, B. Interface engineering of 0D/2D Cu2O/BiOBr Z-scheme heterojunction for efficient degradation of sulfamethoxazole: Mechanism, degradation pathway, and DFT calculation. Chemosphere 2023, 346, 140596. [Google Scholar] [CrossRef] [PubMed]
- Ao, X.; Liu, W.; Sun, W.; Yang, C.; Lu, Z.; Li, C. Mechanisms and toxicity evaluation of the degradation of sulfamethoxazole by MPUV/PMS process. Chemosphere 2018, 212, 365–375. [Google Scholar] [CrossRef]
- Zhang, H.; Quan, H.; Yin, S.; Sun, L.; Lu, H. Unraveling the Toxicity Associated with Ciprofloxacin Biodegradation in Biological Wastewater Treatment. Environ. Sci. Technol. 2022, 56, 15941–15952. [Google Scholar] [CrossRef]
- Pang, S.; Zhou, C.; Sun, Y.; Zhang, K.; Ye, W.; Zhao, X.; Cai, L.; Hui, B. Natural wood-derived charcoal embedded with bimetallic iron/cobalt sites to promote ciprofloxacin degradation. J. Clean. Prod. 2023, 414, 137569. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, J.; Yu, Y.; Li, J.; Zhou, Z.; Li, C. Synthesis of CuO/GO-DE Catalyst and Its Catalytic Properties and Mechanism on Ciprofloxacin Degradation. Nanomaterials 2022, 12, 4305. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, J.; Zhang, J.; Niu, J.; Zhao, J.; Wei, Y.; Yao, B. Photocatalytic degradation of ciprofloxacin using Zn-doped Cu2O particles: Analysis of degradation pathways and intermediates. Chem. Eng. J. 2019, 374, 316–327. [Google Scholar] [CrossRef]
- Kim, T.-K.; Kim, T.; Park, H.; Lee, I.; Jo, A.; Choi, K.; Zoh, K.-D. Degradation of Ciprofloxacin and Inactivation of Ciprofloxacin Resistant, E. Faecium during UV-LED (275 nm)/Chlorine Process. Chem. Eng. J. 2020, 394, 124803. [Google Scholar] [CrossRef]
- Teel, A.L.; Elloy, F.C.; Watts, R.J. Persulfate activation during exertion of total oxidant demand. Chemosphere 2016, 158, 184–192. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Q.; Lin, Y.-L.; Zhu, Y.; Xiong, C.; Huang, D.; Xu, L. Degradation Kinetics and Disinfection By-Product Formation of Iopromide during UV/Chlorination and UV/Persulfate Oxidation. Water 2022, 14, 503. [Google Scholar] [CrossRef]
- Montazeri, B.; Koba-Ucun, O.; Arslan-Alaton, I.; Olmez-Hanci, T. Iprodione Removal by UV-Light-, Zero-Valent Iron- and Zero-Valent Aluminium-Activated Persulfate Oxidation Processes in Pure Water and Simulated Tertiary Treated Urban Wastewater. Water 2021, 13, 1679. [Google Scholar] [CrossRef]
- Yu, D.; Zeng, S.; Wu, Y.; Niu, J.; Chen, K.; Tian, H.; Wang, X.; Yao, Z. The Remediation of Organic Pollution in Soil by Persulfate. Water Air Soil Pollut. 2024, 235, 1–25. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Zhu, W. Controlled-Release Materials for Remediation of Trichloroethylene Contamination in Groundwater. Materials 2023, 16, 7045. [Google Scholar] [CrossRef]
- Abbas, W.; Abbas, S.; Nawaz, M.; Azam, M.; Oh, J.-M.; Shahzad, A. Development of polystyrene coated persulfate slow-release beads for the oxidation of targeted PAHs: Effect of sulfate and chloride ions. J. Hazard. Mater. 2021, 416, 125879. [Google Scholar] [CrossRef]
- Yun, G.; Park, S.; Kim, Y.; Han, K. Development of Slow-Releasing Tablets Combined with Persulfate and Ferrous Iron for In Situ Chemical Oxidation in Trichloroethylene-Contaminated Aquifers. Water 2023, 15, 4103. [Google Scholar] [CrossRef]
- Xiong, R.; Yu, X.; Yu, L.; Peng, Z.; Cheng, L.; Li, T.; Fan, P. Biological denitrification using polycaprolactone-peanut shell as slow-release carbon source treating drainage of municipal WWTP. Chemosphere 2019, 235, 434–439. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Xia, Y.; Zhang, M.; Xie, Y.; Dong, L.; Bi, Q.; Wang, Y.; Wang, X.; Yang, S. A Novel Double-Coated Persulfate Slow-Release Material: Preparation and Application for the Removal of Antibiotics from Groundwater. Water 2025, 17, 10. https://doi.org/10.3390/w17010010
Hu Z, Xia Y, Zhang M, Xie Y, Dong L, Bi Q, Wang Y, Wang X, Yang S. A Novel Double-Coated Persulfate Slow-Release Material: Preparation and Application for the Removal of Antibiotics from Groundwater. Water. 2025; 17(1):10. https://doi.org/10.3390/w17010010
Chicago/Turabian StyleHu, Zhixin, Yujin Xia, Miao Zhang, Yilin Xie, Luyu Dong, Qingquan Bi, Yunfei Wang, Xueli Wang, and Shengke Yang. 2025. "A Novel Double-Coated Persulfate Slow-Release Material: Preparation and Application for the Removal of Antibiotics from Groundwater" Water 17, no. 1: 10. https://doi.org/10.3390/w17010010
APA StyleHu, Z., Xia, Y., Zhang, M., Xie, Y., Dong, L., Bi, Q., Wang, Y., Wang, X., & Yang, S. (2025). A Novel Double-Coated Persulfate Slow-Release Material: Preparation and Application for the Removal of Antibiotics from Groundwater. Water, 17(1), 10. https://doi.org/10.3390/w17010010