Sensitivity of Runoff to Climatic Factors and the Attribution of Runoff Variation in the Upper Shule River, North-West China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Diagnosis of Mutation Time
2.3.2. Methods of Runoff Variation Attribution Analysis
- (1)
- Budyko equation
- Budyko equation
- b.
- Sensitivity equations
- c.
- Influence analysis of P, ET0, and n on runoff sensitivity
- d.
- Calculation of the runoff response to P, ET0 and n
- e.
- Calculation of , and contributions to runoff change
- (2)
- The slope changing ratio of cumulative quantity (SCRCQ) method
- (3)
- Climate elasticity method
3. Results
3.1. Runoff Change in the Upper Shule River from 1972 to 2021
3.1.1. Temporal Variation of Runoff Depth
3.1.2. Breakpoint of Runoff
3.1.3. Variations in the Annual Runoff Depth Based on the Change Point
3.2. Impact of Runoff Sensitivity to Climate Change and Human Activities (Runoff Sensitivity) on Runoff Change
3.2.1. Runoff Sensitivity Change Trend and Attribution Analysis in the Upper Shule River from 1972 to 2021
3.2.2. Contributions of Runoff Sensitivity to Runoff Change in the Upper Shule River
3.3. Attribution Analysis of Runoff Change
3.3.1. Quantitative Analysis of the Causes of Runoff Change Based on the SCRCQ Method
3.3.2. Quantitative Analysis of the Causes of Runoff Change Based on the Climate Elasticity Method
3.3.3. Quantitative Analysis of the Causes of Runoff Change Based on the Budyko Equation
4. Discussion
4.1. Attribution of Runoff Change
4.2. Comparison of the Results from Different Attribution Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Chiew, F.H.; Peña-Arancibia, J.; Sun, F.; Li, H.; Leuning, R. Global variation of transpiration and soil evaporation and the role of their major climate drivers. J. Geophys. Res. Atmos. 2017, 122, 6868–6881. [Google Scholar] [CrossRef]
- Lu, X.; Zang, C.; Burenina, T. Study on the variation in evapotranspiration in different period of the Genhe River Basin in China. Phys. Chem. Earth Parts A/B/C 2020, 120, 102902. [Google Scholar] [CrossRef]
- Dong, H.; Huang, S.; Fang, W.; Leng, G.; Wang, H.; Ren, K.; Zhao, J.; Ma, C. Copula-based non-stationarity detection of the precipitation-temperature dependency structure dynamics and possible driving mechanism. Atmos. Res. 2021, 249, 105280. [Google Scholar] [CrossRef]
- He, Y.; Song, J.; Hu, Y.; Tu, X.; Zhao, Y. Impacts of different weather conditions and land use change on runoff variations in the Beiluo River Watershed, China. Sustain. Cities Soc. 2019, 50, 101674. [Google Scholar] [CrossRef]
- Sun, X.; Dong, Q.; Zhang, X. Attribution analysis of runoff change based on Budyko-type model with time-varying parameters for the Lhasa River Basin, Qinghai–Tibet Plateau. J. Hydrol. Reg. Stud. 2023, 48, 101469. [Google Scholar] [CrossRef]
- Bai, X.; Zhao, W. Impacts of climate change and anthropogenic stressors on runoff variations in major river basins in China since 1950. Sci. Total Environ. 2023, 898, 165349. [Google Scholar] [CrossRef]
- Shahid, M.; Rahman, K.U.; Balkhair, K.S.; Nabi, A. Impact assessment of land use and climate changes on the variation of runoff in Margalla Hills watersheds, Pakistan. Arab. J. Geosci. 2020, 13, 239. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, G.; Tian, P.; Mu, X.; Tian, X.; Feng, J.; Bai, Y. Runoff changes in the major river basins of China and their responses to potential driving forces. J. Hydrol. 2022, 607, 127536. [Google Scholar] [CrossRef]
- Mo, C.; Lai, S.; Yang, Q.; Huang, K.; Lei, X.; Yang, L.; Yan, Z.; Jiang, C. A comprehensive assessment of runoff dynamics in response to climate change and human activities in a typical karst watershed, southwest China. J. Environ. 2023, 332, 117380. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Miao, C.; Zhang, X.; Yang, T.; Duan, Q. Detecting the quantitative hydrological response to changes in climate and human activities. Sci. Total Environ. 2017, 586, 328–337. [Google Scholar] [CrossRef]
- Chu, H.; Wei, J.; Qiu, J.; Li, Q.; Wang, G. Identification of the impact of climate change and human activities on rainfall-runoff relationship variation in the Three-River Headwaters region. Ecol. Indic. 2019, 106, 105516. [Google Scholar] [CrossRef]
- Bao, S.; Yang, W.; Wang, X.; Li, H. Quantifying Contributions of Climate Change and Local Human Activities to Runoff Decline in the Second Songhua River Basin. Water 2020, 12, 67–74. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, J.; Zhao, X.; Liu, C.; Wei, W.; Yang, X.; Li, Q.; Zhao, Y. Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecol. Indic. 2021, 121, 107013. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, D.; Jayawardena, A.W.; Xu, X.; Yang, H. Hydrological change driven by human activities and climate variation and its spatial variability in Huaihe Basin, China. Hydrol. Sci. J. 2016, 61, 1370–1382. [Google Scholar] [CrossRef]
- Ning, T.; Li, Z.; Liu, W. Separating the impacts of climate change and land surface alteration on runoff reduction in the Jing River catchment of China. Catena 2016, 147, 80–86. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Fu, J.; Chen, Z.; Ning, Z.; Liu, Y. Quantifying the relative contribution of climate variability and human activities impacts on baseflow dynamics in the Tarim River Basin, Northwest China. J. Hydrol. Reg. Stud. 2021, 36, 100853. [Google Scholar] [CrossRef]
- Ni, Y.; Lv, X.; Yu, Z.; Wang, J.; Ma, L.; Zhang, Q. Intra-annual variation in the attribution of runoff evolution in the Yellow River source area. Catena 2023, 225, 107032. [Google Scholar] [CrossRef]
- Saha, A.; Joseph, J.; Ghosh, S. Climate controls on the terrestrial water balance: Influence of aridity on the basin characteristics parameter in the Budyko framework. Sci. Total Environ. 2020, 739, 139863. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Zhang, C. Holocene millennial-scale erosion and deposition processes in the middle reaches of inland drainage basins, arid China. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Chang, Y.; Ding, Y.; Zhao, Q.; Zhang, S. Remote estimation of terrestrial evapotranspiration by Landsat 5 TM and the SEBAL model in cold and high-altitude regions: A case study of the upper reach of the Shule River Basin, China. Hydrol. Process. 2017, 31, 514–524. [Google Scholar] [CrossRef]
- Wang, S.; Ding, Y.; Iqbal, M. Defining Runoff Indices and Analyzing Their Relationships with Associated Precipitation and Temperature Indices for Upper River Basins in the Northwest Arid Region of China. Water 2017, 9, 618. [Google Scholar] [CrossRef]
- Lang, Y.; Meng, C. Runoff optimization and control for basin water allocation. Water Supply 2022, 22, 2630–2643. [Google Scholar] [CrossRef]
- Qin, J.; Ding, Y.; Han, T.; Liu, Y. Identification of the Factors Influencing the Baseflow in the Permafrost Region of the Northeastern Qinghai-Tibet Plateau. Water 2017, 9, 666. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, S.; Zhao, Q.; Zhang, S.; Zhang, X. Projected glacier meltwater and river run-off changes in the Upper Reach of the Shule River Basin, north-eastern edge of the Tibetan Plateau. Hydrol. Process. 2019, 33, 1059–1074. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, S.; Zhang, Z.; Wang, G.; Zhang, S. Evaluation of nine precipitation products with ground-based measurements during 2001 to 2013 in alpine Upper Reach of Shule River Basin, northeastern edge of the Tibetan Plateau. Theor. Appl. Climatol. 2021, 144, 1101–1117. [Google Scholar] [CrossRef]
- He, Y.; Jiang, X.; Wang, N.; Zhang, S.; Ning, T.; Zhao, Y.; Hu, Y. Changes in mountainous runoff in three inland river basins in the arid Hexi Corridor, China, and its influencing factors. Sustain. Cities Soc. 2019, 50, 101703. [Google Scholar] [CrossRef]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the InVEST model to assess the impacts of climate and land use changes on water yield in the upstream regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, Q.; Pu, T. Assessment of water stress level about global glacier-covered arid areas: A case study in the Shule River Basin, northwestern China. J. Hydrol. Reg. Stud. 2021, 37, 100895. [Google Scholar] [CrossRef]
- Ma, L.; Bo, J.; Li, X.; Fang, F.; Cheng, W. Identifying key landscape pattern indices influencing the ecological security of inland river basin: The middle and lower reaches of Shule River Basin as an example. Sci. Total Environ. 2019, 674, 424–438. [Google Scholar] [CrossRef]
- Zhou, J.; Ding, Y.; Wu, J.; Liu, F.; Wang, S. Streamflow generation in semi-arid, glacier-covered, montane catchments in the upper Shule River, Qilian Mountains, northeastern Tibetan plateau. Hydrol. Process. 2021, 35, e14276. [Google Scholar] [CrossRef]
- Wu, J.; Li, H.; Zhou, J.; Tai, S.; Wang, X. Variation of Runoff and Runoff Components of the Upper Shule River in the Northeastern Qinghai–Tibet Plateau under Climate Change. Water 2021, 13, 3357. [Google Scholar] [CrossRef]
- Jiang, Y.; Du, W.; Chen, J.; Sun, W. Spatiotemporal Variations in Snow Cover and Hydrological Effects in the Upstream Region of the Shule River Catchment, Northwestern China. Remote Sens. 2021, 13, 3212. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Z.; Zheng, Z.; Duan, Y. Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman–Monteith methods in the study of global drylands. Adv. Atmos. Sci. 2017, 34, 1381–1394. [Google Scholar] [CrossRef]
- Kadioglu, M. Trends in surface air temperature data over Turkey. Int. J. Climatol. 1997, 17, 511–520. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, X.; Yang, G.; Yao, J.; Liao, N. Impacts of climate change and human activities on water resources in the Ebinur Lake Basin, Northwest China. J. Arid Land 2021, 13, 581–598. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Y.; Li, Z.; Wang, X.; Fu, Q.; Liu, D.; Sun, L.; Xu, R. An approach for runoff and sediment nexus analysis under multi-flow conditions in a hyper-concentrated sediment river, Southwest China. J. Contam. Hydrol. 2020, 235, 103702. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, B.J. Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol. 1999, 216, 99–110. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Lei, Z.; Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. 2008, 44, 893–897. [Google Scholar] [CrossRef]
- Meng, F.; Liu, T.; Huang, Y.; Luo, M.; Bao, A.; Hou, D. Quantitative Detection and Attribution of Runoff Variations in the Aksu River Basin. Water 2016, 8, 338. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Peng, W.; Liu, X.; Dong, F.; Huang, A.; Wang, W. Changes in Runoff Volumes of Inland Terminal Lake: A Case Study of Lake Daihai. Earth Space Sci. 2021, 8, e2021EA001954. [Google Scholar] [CrossRef]
- Cheng, Q.; Zuo, X.; Zhong, F.; Gao, L.; Xiao, S. Runoff variation characteristics, association with large-scale circulation and dominant causes in the Heihe River Basin, Northwest China. Sci. Total Environ. 2019, 688, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Xu, M.; Kang, S.; Wu, H. Impacts of climate change and human activities on runoff changes in the Ob River Basin of the Arctic region from 1980 to 2017. Theor. Appl. Climatol. 2022, 148, 1663–1674. [Google Scholar] [CrossRef]
- Ma, H.; Yang, D.; Tan, S.K.; Gao, B.; Hu, Q. Impact of climate variability and human activity on streamflow decrease in the Miyun Reservoir catchment. J. Hydrol. 2010, 389, 317–324. [Google Scholar] [CrossRef]
- Sun, X.; Peng, Y.; Zhou, H.; Zhang, X. Responses of Streamflow to Climate Variability and Hydraulic Project Construction in Wudaogou Basin, Northeast China. J. Hydrol. Eng. 2016, 21, 05016016. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Wang, C.; Zhao, W. Runoff sensitivity increases with land use/cover change contributing to runoff decline across the middle reaches of the Yellow River basin. J. Hydrol. 2021, 600, 126536. [Google Scholar] [CrossRef]
- Ni, Y.; Yu, Z.; Lv, X.; Qin, T.; Yan, D.; Zhang, Q.; Ma, L. Spatial difference analysis of the runoff evolution attribution in the yellow river basin. J. Hydrol. 2022, 612, 128149. [Google Scholar] [CrossRef]
- Wu, X.; Hao, Z.; Hao, F.; Zhang, X. Variations of compound precipitation and temperature extremes in China during 1961-2014. Sci. Total Environ. 2019, 663, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, A.; Zhang, Y.; Yang, F. The quantitative attribution of climate change to runoff increase over the Qinghai-Tibetan Plateau. Sci. Total Environ. 2023, 897, 165326. [Google Scholar] [CrossRef]
- Shen, Q.; Cong, Z.; Lei, H. Evaluating the impact of climate and underlying surface change on runoff within the Budyko framework: A study across 224 catchments in China. J. Hydrol. 2017, 554, 251–262. [Google Scholar] [CrossRef]
- Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [Google Scholar] [CrossRef]
- Han, J.; Yang, Y.; Roderick, M.L.; McVicar, T.R.; Yang, D.; Zhang, S.; Beck, H.E. Assessing the Steady-State Assumption in Water Balance Calculation Across Global Catchments. Water Resour. Res. 2020, 56, e2020WR027392. [Google Scholar] [CrossRef]
- Li, H.; Wang, W.; Fu, J.; Wei, J. Spatiotemporal heterogeneity and attributions of streamflow and baseflow changes across the headstreams of the Tarim River Basin, Northwest China. Sci. Total Environ. 2023, 856, 159230. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, B.; Fan, Y.; Sun, C.; Fang, G. Hydrological and water cycle processes of inland river basins in the arid region of Northwest China. J. Arid. Land 2019, 11, 161–179. [Google Scholar] [CrossRef]
Runoff Sensitivity | Slope | Trend | Maximum Values | Minimum Values |
---|---|---|---|---|
−0.0044 | decreased | 2.12 | 2.46 | |
−0.0044 | decreased | 1.12 | 1.46 | |
−0.0031 | decreased | 0.37 | 0.59 |
Period | ||||||
---|---|---|---|---|---|---|
Baseline period | 0.1505 | 0.0526 | −0.2374 | 2.3731 | −1.3731 | −0.5304 |
Post-baseline period | 0.1308 | 0.0500 | −0.3112 | 2.2319 | −1.2319 | −0.4332 |
Period | Slope of Cumulative Runoff Depth (mm) | Slope of Cumulative Precipitation (mm) | Slope of Cumulative Potential Evapotranspiration (mm) |
---|---|---|---|
Baseline period | 79.91 | 196.36 | 386.42 |
Post-baseline period | 125.89 | 233.09 | 409.93 |
Variation | 45.98 | 36.73 | 23.51 |
Rate of change | 57.54% | 18.71% | 6.08% |
Parameter Name | ) | ||||
---|---|---|---|---|---|
Calculation results | 1.90 | 0.8851 | 2.67 | −1.67 | 29.3 |
Period | ||||
---|---|---|---|---|
Baseline period | 0.86 | 2.37 | −1.37 | −0.53 |
Post-baseline period | 0.65 | 2.23 | −1.23 | −0.43 |
Entire period | 0.73 | 2.31 | −1.31 | −0.49 |
83.88 | ||||
−17.35 | ||||
33.47 |
Land Use Type | 1990 | 2015 | Area of Change | ||
---|---|---|---|---|---|
Area | Proportion (%) | Area | Proportion (%) | ||
Cultivated land | 1 | 0.01 | 2 | 0.02 | 1 |
Woodland | 77 | 0.72 | 75 | 0.70 | −2 |
Grassland | 5322 | 49.99 | 5299 | 49.73 | −23 |
Water | 82 | 0.77 | 92 | 0.86 | 10 |
Urban and rural industrial and mining land | 0 | 0 | 1 | 0.01 | 1 |
Unused land | 5164 | 48.51 | 5186 | 48.67 | 22 |
Method | Contribution of Precipitation (%) | Contribution of Potential Evapotranspiration (%) | Contribution of Human Activities (%) |
---|---|---|---|
SCRCQ method | 32.52 | 10.57 | 56.91 |
Climate elasticity method | 85.68 | −19.54 | 33.86 |
Budyko equation | 83.88 | −17.35 | 33.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Niu, Z.; Zhang, R.; Ma, Y. Sensitivity of Runoff to Climatic Factors and the Attribution of Runoff Variation in the Upper Shule River, North-West China. Water 2024, 16, 1272. https://doi.org/10.3390/w16091272
Jia L, Niu Z, Zhang R, Ma Y. Sensitivity of Runoff to Climatic Factors and the Attribution of Runoff Variation in the Upper Shule River, North-West China. Water. 2024; 16(9):1272. https://doi.org/10.3390/w16091272
Chicago/Turabian StyleJia, Ling, Zuirong Niu, Rui Zhang, and Yali Ma. 2024. "Sensitivity of Runoff to Climatic Factors and the Attribution of Runoff Variation in the Upper Shule River, North-West China" Water 16, no. 9: 1272. https://doi.org/10.3390/w16091272
APA StyleJia, L., Niu, Z., Zhang, R., & Ma, Y. (2024). Sensitivity of Runoff to Climatic Factors and the Attribution of Runoff Variation in the Upper Shule River, North-West China. Water, 16(9), 1272. https://doi.org/10.3390/w16091272