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Abstract: Climate change and human activities exert significant impact on the mechanism of runoff
generation and confluence. Comprehending the reasons of runoff change is crucial for the sustainable
development of water resources. Taking the Upper Shule River as the research area, the M-K test
and the moving t test were used to diagnose the runoff mutation time. Furthermore, the slope
changing ratio of cumulative quantity method (SCRCQ), climate elasticity method, and Budyko
equation were utilized to quantitatively evaluate the impacts and contribution rates of climate change
and human activities. The following results were obtained: (1) The Upper Shule River experienced
a significant increase in runoff from 1972 to 2021, with 1998 marking the year of abrupt change.
(2) The runoff sensitivity showed a downward trend from 1972 to 2021. The main factor affecting the
decrease in runoff sensitivity was the characteristic parameters of underlying surface (n), followed
by precipitation (P), while the influence of potential evapotranspiration (ET0) was the weakest.
(3) The response of runoff changes to runoff sensitivity and influencing factors were 90.32% and
9.68%, respectively. (4) The results of three attribution methods indicated that climate change was
the primary factor causing the alteration of runoff in the Upper Shule River. The research results
supplement the hydrological change mechanisms of the Upper Shule River and provide a scientific
basis for future water resources management and flood control measures.
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1. Introduction

Precipitation and evapotranspiration, as main factors of the climate change, have
caused profound influence on runoff depth, peak and duration [1–3]. Human activities
can significantly impact the mechanism of runoff generation [4]. For instance, changes
in land use, reservoir construction, and reforestation can cause alterations in runoff [5].
The literature reports that precipitation is the dominant factor on runoff changes in the
Yangtze River, Margalla Hills River, and Pearl River, whereas human activities are the
cause of runoff changes in the Liaohe River, Haihe River, Yellow River, Songhuajiang
River, and Huaihe River [6–8]. Thus, the influencing mechanism of runoff change is
different for each river. Significant changes in runoff may increase frequency of extreme
droughts and floods [9], posing significant challenges to water resource management and
flood mitigation. Therefore, identifying the mechanisms of runoff changes is crucial to
optimize the management of regional water resources and measures for flood prevention
and mitigation.

The scientific understanding of the mechanisms of runoff changes is an important
issue that hydrologists are working on. Up to now, the runoff attribution analysis meth-
ods can be broadly categorized as hydrological models, statistical analysis methods, and
conceptual methods [10]. Statistical analysis methods represented by the double-mass
curve method and the slope changing ratio of cumulative quantity (SCRCQ) method are
simple in calculation and require less data, but they lack a physical mechanism and cannot
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adequately simulate changes in hydrological processes [11]. Hydrological models repre-
sented by the soil and water assessment tool (SWAT) and the variable infiltration capacity
(VIC) have strong physical mechanisms and high analytical accuracy. However, the data
needs to be very accurate, and the process of calibrating is also very complicated [12,13].
Conceptual methods represented by the Budyko equation have advantages of both hydro-
logical models and statistical analysis methods. The Budyko equation is the most popular
method for conducting runoff change attribution analysis [14–16]. Compared with hydro-
logical models and statistical analysis methods, the Budyko equation is easy to implement
with low data requirements, and its structure can effectively reduce model sensitivity and
uncertainty [17,18].

Runoff in the Upper Shule River has changed dramatically as the environment has
changed [19–21], which has had a negative impact on the development of oasis agriculture
in the middle and lower reaches [22]. Previous studies on the causes of runoff change in
the upper Shule River have focused mainly on runoff composition and meteorological
factors [23–25]. For example, He et al. [26] divided data from 1960–2012 into two research
periods with 1997 as the break point and used the Budyko equation to carry out a response
analysis of runoff variation in the Upper Shule River. The results indicated equal impacts
of precipitation (P) and the characteristic parameters of underlying surface change (n) on
runoff change. Wei et al. [27] analysed the impacts of LULC (land use changes) and climate
change on water yield from 2001 to 2019 in the upstream regions of the Shule River Basin
using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. The
results revealed that climate warming has a positive impact on water yield. Apparently,
the impacts of climate change and human activities on runoff change in the Upper Shule
River are still unclear. Thus, exploring the main influencing factors of runoff change in the
Upper Shule River using a rational method is urgent.

In summary, domestic and foreign scholars have conducted various forms of research
on runoff and have achieved certain research results in terms of the variation characteristics,
influencing factors, and research methods of runoff. However, studies on runoff drivers are
mainly focused on the identification results of the runoff change attribution directly based
on a single method, which is uncertain. Furthermore, the previous studies mainly reveal
the impact of influencing factors on runoff change and lack attention to runoff sensitivity
change and its influence on runoff change, especially in the Shule River Basin, which has
experienced a severe water shortage. Although the existing research has preliminarily
understood the evolution law of runoff, the mechanism of runoff change still needs to be
further explored. Thus, the objectives of this study are (1) to detect the mutation time of
runoff change by using Mann–Kendall (M-K) test and the moving t test; (2) to examine
runoff sensitivity change and determine runoff sensitivity contributions to runoff variation
based on the improved Budyko equation; and (3) to identify the impacts of driving forces
on runoff change based on the SCRCQ method, climate elasticity method, and Budyko
equation. The results of this study are expected to provide a comprehensive understanding
of the process of runoff variation in the Upper Shule River and provide a reference for
determining the driving forces of runoff change in areas lacking data.

2. Materials and Methods
2.1. Study Area

The Shule River is located in the arid inland regions of northwest China and Qinghai-
Tibet Plateau (92◦11′–98◦30′ E, 38◦00′–42◦48′ N), with a standard continental drought
climate [28,29]. The area of the Shule River Basin is 4.13 × 104 km2, which is the second
largest river in the Hexi Corridor of Gansu Province. The main sources of recharge in the
Shule River basin are seasonal snow, glacial meltwater, and rainfall, with large seasonal
and interannual changes, and more than half of the annual water volume comes from the
flood season [19]. Water resources in the Shule River Basin mainly originate from the Qilian
Mountain area, and the change in runoff in the upper reaches directly influence the exploita-
tion and utilization of water resources in the middle and lower reaches. Therefore, the area
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above the Changmabao hydrological station (96◦51′ E, 39◦49′ N), which covers 10,961 km2,
was selected as the study area (Figure 1). The permafrost cover is 83% and the glacier area
is 5% of the catchment area [30]. The main vegetation types in the Upper Shule River are
alpine meadows, alpine grasslands, and desert grasslands, and the vegetation coverage is
generally 40–80% [31,32]. Furthermore, dominated by the typical continental arid climate,
the Upper Shule River is a typical water-shortage area with mean annual precipitation is
209.2 mm, annual mean temperature of about 1.73 ◦C, and potential evapotranspiration of
up to 400 mm per year.
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Figure 1. Location of the Upper Shule River and hydrological station river network.

2.2. Data Sources

In this study, hydro-meteorological data from 1972 to 2021, including monthly and
annual precipitation time series, mean temperature, potential evapotranspiration, and
runoff, were analysed. Monthly runoff, precipitation, and temperature data series during
1972–2021 from the Changmabao hydrological station and Yuerhong rainfall station were
collected from the Gansu Hydrological Station. Notably, the collected precipitation data
included rainfall and snowfall. All the original runoff data used in this paper are complete.
The land use data, spatial distribution of population data and daily data from the Tuole
meteorological station were obtained from the Data Center for Resources and Environ-
mental Sciences, Chinese Academy of Sciences (https://www.resdc.cn/ (accessed on 12
October 2022)). The quality of the meteorological data was firmly controlled before its
release. The missing data accounted for less than 1% of the total data and were processed
using the 10–year moving average method. Potential evapotranspiration was calculated via
the Thornthwaite method [33]. The methodological framework of this research is shown in
Figure 2.

https://www.resdc.cn/
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2.3. Methods
2.3.1. Diagnosis of Mutation Time

The M-K test is broadly applied in trend analysis and mutation test of hydrological
elements [34]. A trend is determined based on the range of values (Z) for a trend test. The
Z is calculated as follows: 

Z = (S−1)√
var(S)

, S > 0

Z = 0, S = 0
Z = (S+1)√

var(S)
, S < 0

(1)

Z > 0 represents an upward trend; otherwise, Z < 0 represents a downward trend.
When |Z| > 1.96, the significance level is greater than 95% [35]. In the mutation analysis,
the statistical values UF and UB are determined by the time series. If UF and UB both vary
within the confidence interval of U0.05 = ±1.96, the intersection of the two statistical values
is the mutation time. The statistical index UF is calculated based on the following equation:

UF =
[sk − E(sk)]√

VAR(sk)
(k = 1, 2, . . . , n) (2)

The test statistics Sk, E(sk), and VAR(sk) are calculated using the following formulas:

Sk =
k

∑
i=1

i−1

∑
j

αij(k = 2, 3, . . . , n) (3)

αij =

{
1
(
xi > xj

)
0
(
xi ≤ xj

)(1 ≤ j ≤ i) (4)
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E(sk) =
k(k + 1)

4
(5)

VAR(sk) =
k(k − 1)(2k + 5)

72
(6)

UB is the backwards sequence and is calculated like UF with an inverse time series.
Runoff has complex characteristics, such as nonlinearity and randomness, which lead

to uncertainty in determining the abrupt change time when based on only one method.
Therefore, the moving t test was used as an auxiliary method to detect the year of abrupt
change in runoff [36].

2.3.2. Methods of Runoff Variation Attribution Analysis

(1) Budyko equation

When using the Budyko equation for the attribution analysis of runoff change, in
addition to precipitation (P), potential evapotranspiration (ET0), and the characteristic
parameters of underlying surface change (n), the sensitivity of runoff to P, ET0, and n
(runoff sensitivity) are also related to runoff change. In this study, the runoff responses to P,
ET0, and n were considered direct effects of drivers on runoff change, and the responses of
runoff sensitivity (εP, εET0 , εn) to runoff change were considered as the indirect effects of
drivers. Focusing on the changes in runoff sensitivity, the improved Budyko formula was
used to further understand the mechanism of runoff change from the direct and indirect
effects of influencing factors.

a. Budyko equation

In this paper, the Budyko equation is used to analyse the mechanism of runoff
change [37,38]. The expression obtained by combining the water balance equation is
given as follows:

P − R − ∆S =
P × ET0

(Pn + ETn
0 )

1
n

(7)

where ∆S is the change in water storage, and this study assumed that ∆S = 0; n is the
characteristic parameters of underlying surface, which was calculated by Equation (7).

b. Sensitivity equations

εP =
1 + 2φ + 3nφ2

1 + φ + nφ2 (8)

εET0 =
2nφ + φ

1 + φ + nφ2 (9)

εn = − nφ2

1 + φ + nφ2 (10)

where εP, εET0 , and εn are the sensitivity coefficients of R to P, ET0, and n, respectively; φ is
the drought index.

c. Influence analysis of P, ET0, and n on runoff sensitivity

The influences of P, ET0, and n on εP are expressed as follows:

∆P−εP = |εP2(P2, ET01, n1)− εP1(P1, ET01, n1)| (11)

∆ET0−εP = |εP2(P1, ET02, n1)− εP1(P1, ET01, n1)| (12)

∆n−εP = |εP2(P1, ET01, n2)− εP1(P1, ET01, n1)| (13)

where ∆P−εP , ∆ET0−εP , and ∆n−εP are the changes in εP caused by P, ET0, and n, respectively.
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Then, contributions of P, ET0, and n to εP are expressed as follows:

AP−εP =
∆P−εP

∆P−εP + ∆ET0−εP + ∆n−εP

(14)

AET0−εP =
∆ET0−εP

∆P−εP + ∆ET0−εP + ∆n−εP

(15)

An−εP =
∆n−εP

∆P−εP + ∆ET0−εP + ∆n−εP

(16)

where AP−εP , AET0−εP , and An−εP are the influences of P, ET0, and n, respectively, on εP.
By repeating the steps in (c), ∆P−εET0

, ∆ET0−εET0
, ∆n−εET0

, ∆P−εn , ∆ET0−εn , and ∆n−εn

can be estimated (Equations (11)–(13)). Then, AP−εET0
, AET0−εET0

, An−εET0
, AP−εn , AET0−εn ,

and An−εn can also be estimated (Equations (14)–(16)).

d. Calculation of the runoff response to P, ET0 and n

The runoff change caused by each factor is expressed as follows:

dR
R

= εP
dP
P

+ εET0

dET0

ET0
+ εn

dn
n

(17)

Then, the variation in runoff directly caused by driving factors is expressed as follows:

∆R
R P,ET0,n− ∆R

R

=

∣∣∣∣(εP1

dP
P2

+ εET01

dET0
ET02

+ εn1

dn
n2

)
−

(
εP1

dP
P1

+ εET01

dET0
ET01

+ εn1

dn
n1

)∣∣∣∣ (18)

e. Calculation of εP, εET0 and εn contributions to runoff change

From Equation (17), the runoff changes caused by εP, εET0 , and εn are expressed
as follows:

∆R
R εP ,εET0 ,εn− ∆R

R

=

∣∣∣∣(εP2

dP
P1

+ εET02

dET0
ET01

+ εn2

dn
n1

)
−

(
εP1

dP
P1

+ εET01

dET0
ET01

+ εn1

dn
n1

)∣∣∣∣ (19)

Then, the contributions of runoff sensitivity (indirect effects) and driving factors (direct
effects) to runoff change are as follows:

AεP ,εET0 ,εn− ∆R
R

=
RεP ,εET0 ,εn− ∆R

R

RεP ,εET0 ,εn− ∆R
R
+ RP,ET0,n− ∆R

R

(20)

AP,ET0,n− ∆R
R

=
RP,ET0,n− ∆R

R

RεP ,εET0 ,εn− ∆R
R
+ RP,ET0,n− ∆R

R

(21)

where AεP ,εET0 ,εn− ∆R
R

and AP,ET0,n− ∆R
R

are the influences of runoff sensitivity and driving

factors on runoff change, respectively.

(2) The slope changing ratio of cumulative quantity (SCRCQ) method

For the SCRCQ method [39,40], the sum of the degree of influence from all contributors
that cause changes in runoff is one. Therefore, according to the ratio of the cumulative slope
change rate of each contributor to the cumulative slope change rate of runoff, the impact of
each contributor on runoff change can be determined. At present, many scholars use this
method to identify the reasons for runoff change [41,42]. The equations are as follows:

AP = 100 ×

[
SPa−SPb
|Spb|

]
[

SRa−SRb
|SRb |

] (22)
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AET0 = −100 ×

[
SEa−SEb
|SEb |

]
[

SRa−SRb
|SRb |

] (23)

The impact of human activities is expressed as follows:

AH = 1 − AP − AET0 (24)

where SRa and SRb, SPa and SPb, and SEa and SEb are the slopes of the cumulative R, P, and
ET0 before and after the mutation, respectively. AP, AET0 , and AH are the influences of P,
ET0, and n, respectively, on runoff change.

(3) Climate elasticity method

The climate elasticity method mainly reflects the sensitivity of runoff to climate change
through the climate elasticity coefficient [43,44]. Combining the Budyko equation and the
water balance equation, the actual evapotranspiration of the basin is a function of the drying
index (φ = ET0

P ). The following equations are used to calculate the elasticity coefficients:

εP = 1 +
φF′(φ)

1 − F(φ)
(25)

εP + εET0 = 1 (26)

F(φ) =
(

1 + φ−2
)−0.5

(27)

where F(φ) is the actual evapotranspiration function.
Then, runoff change caused by climate change is calculated as follows:

∆Rc = εP
R
P

∆P + εET0

R
ET0

∆ET0 (28)

The corresponding contributions are expressed as follows:

Ac =
∆Rc

∆R
× 100 (29)

AH =
(∆R − ∆Rc)

∆R
× 100 (30)

where ∆R, ∆P, and ∆ET0 are the variations in R, P, and ET0, respectively, between the
baseline and post-baseline periods.

3. Results
3.1. Runoff Change in the Upper Shule River from 1972 to 2021
3.1.1. Temporal Variation of Runoff Depth

The annual average runoff depth was 101.0 mm, and the Cv (coefficient of variation)
was 0.29. The maximum annual runoff depth was 159.1 mm, which occurred in 2017. The
minimum annual runoff depth was 54.5 mm, which occurred in 1976. The annual runoff
depth passed the 0.05 significance test based on the M-K test, with an overall significant
increase at a rate of 14.29 mm/10a (Figure 3a). Before 1998, the cumulative anomaly of the
annual average runoff showed a decreasing trend. After 1998, the cumulative anomaly of
the annual average runoff showed an increasing trend (Figure 3b). The results showed that
the annual runoff depth of the Upper Shule River may have changed in 1998.



Water 2024, 16, 1272 8 of 18
Water 2024, 16, x FOR PEER REVIEW 8 of 18 
 

 

  
(a) (b) 

Figure 3. Temporal variation in annual runoff from 1972 to 2021 in the Upper Shule River. (a) Trend 
analysis of runoff change by linear tendency estimate method. (b) Trend analysis of runoff change 
by cumulative anomaly method. 

3.1.2. Breakpoint of Runoff 
Figure 4 shows mutation analysis of annual runoff depth based on the two methods. 

According to the M-K test (Figure 4a), the intersections between UF and UB were within 
the 95% confidence interval, indicating that 1998 was the variation time of annual runoff 
depth. According to the moving t test (Figure 4b), the study area had a significant breaking 
point from the 1990s to 2010s. Therefore, the mutation of the runoff depth occurred in 1998 
in the Upper Shule River from 1972 to 2021, which may be related to global warming in 
the late 1990s. 

  

(a) (b) 

Figure 4. Detection of mutations of annual runoff depth in the Upper Shule River from 1972 to 2021. 
(a) Abrupt change time determined by the M-K test; (b) Abrupt change time determined by the 
moving t test. 

3.1.3. Variations in the Annual Runoff Depth Based on the Change Point 
The annual runoff depth from 1972 to 2021 was divided into two stages based on the 

change point: 1972 to 1998 (baseline period) and 1999 to 2021 (post-baseline period). As 
shown in Figure 5, there was a difference in the annual runoff depth change between the 
two periods. In the baseline period, the annual runoff depth showed a decreasing trend, 
while in the post-baseline period, the annual runoff depth showed an increasing trend. 
The annual mean runoff depth in the post-baseline period was 44.4 mm, which is greater 
than the annual mean runoff depth in the baseline period. 

Figure 3. Temporal variation in annual runoff from 1972 to 2021 in the Upper Shule River. (a) Trend
analysis of runoff change by linear tendency estimate method. (b) Trend analysis of runoff change by
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3.1.2. Breakpoint of Runoff

Figure 4 shows mutation analysis of annual runoff depth based on the two methods.
According to the M-K test (Figure 4a), the intersections between UF and UB were within
the 95% confidence interval, indicating that 1998 was the variation time of annual runoff
depth. According to the moving t test (Figure 4b), the study area had a significant breaking
point from the 1990s to 2010s. Therefore, the mutation of the runoff depth occurred in 1998
in the Upper Shule River from 1972 to 2021, which may be related to global warming in the
late 1990s.
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3.1.3. Variations in the Annual Runoff Depth Based on the Change Point

The annual runoff depth from 1972 to 2021 was divided into two stages based on the
change point: 1972 to 1998 (baseline period) and 1999 to 2021 (post-baseline period). As
shown in Figure 5, there was a difference in the annual runoff depth change between the
two periods. In the baseline period, the annual runoff depth showed a decreasing trend,
while in the post-baseline period, the annual runoff depth showed an increasing trend. The
annual mean runoff depth in the post-baseline period was 44.4 mm, which is greater than
the annual mean runoff depth in the baseline period.
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3.2. Impact of Runoff Sensitivity to Climate Change and Human Activities (Runoff Sensitivity) on
Runoff Change
3.2.1. Runoff Sensitivity Change Trend and Attribution Analysis in the Upper Shule River
from 1972 to 2021

The improved Budyko equation was used to calculate runoff sensitivity (εP, εET0 , εn).
As shown in Table 1, εP, εET0 , and εn decreased slowly, with change rates of −0.0044/yr,
−0.0044/yr, and −0.0031/yr, respectively, and values ranging from 2.12 to 2.46, 1.12 to 1.46,
and 0.37 to 0.59, respectively. Figure 6 shows the effects of P, ET0, and n on the changes in
runoff sensitivity (εP, εET0 , εn). The main contributor to runoff sensitivity was n, followed
by P and then ET0. Notably, P, ET0, and n had approximately the same effects on εP, εET0 ,
and εn, respectively. Additionally, εP + εET0 = 1, so that the effects of P, ET0, and n had the
same effect on εP and εET0 .

Table 1. Runoff sensitivity to precipitation (εP), potential evapotranspiration (|εET0 |), and char-
acteristic parameters of underlying surface change (|εn|) in the Upper Shule River between 1972
and 2021.

Runoff Sensitivity Slope Trend Maximum Values Minimum Values

εP −0.0044 decreased 2.12 2.46
|εET0 | −0.0044 decreased 1.12 1.46
|εn| −0.0031 decreased 0.37 0.59
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3.2.2. Contributions of Runoff Sensitivity to Runoff Change in the Upper Shule River

Based on Equations (18) and (19), and characteristic values of hydrological parameters
in the baseline and post-baseline periods (Table 2), the ∆R

R values caused by runoff sensi-
tivity (εP, εET0 , εn) and driving factors (P, ET0, n) were calculated to be 0.0369 and 0.0040,
respectively. Thus, the contributions of runoff sensitivity (indirect effects of P, ET0, and n)
and driving factors (direct effects of P, ET0, and n) to runoff change were 90.32% and 9.68%,
respectively. Therefore, the runoff change was mainly caused by the indirect effects of P,
ET0, and n in the Upper Shule River.

Table 2. Characteristic values of hydrological parameters in the baseline and post-baseline periods.

Period ∆P
P

∆ET0
ET0

∆n
n εP εET0 εn

Baseline period 0.1505 0.0526 −0.2374 2.3731 −1.3731 −0.5304
Post-baseline period 0.1308 0.0500 −0.3112 2.2319 −1.2319 −0.4332

Notes: P, ET0, n, εP, εET0 , and εn are the average values of the baseline and post-baseline periods; ∆P, ∆ET0, and
∆n are the changes in P, ET0, and n between the baseline and post-baseline periods.

3.3. Attribution Analysis of Runoff Change
3.3.1. Quantitative Analysis of the Causes of Runoff Change Based on the SCRCQ Method

Figure 7 shows the slopes of the linear relationships of the cumulative annual runoff
depth (SRb and SRa), cumulative annual precipitation (SPb and SPa), and cumulative an-
nual potential evapotranspiration (SEb and SEa) before and after the mutation. The SRb
and SRa of the cumulative annual runoff depth in the baseline and post-baseline periods
were 79.91 mm/yr and 125.89 mm/yr, respectively. The SPb and SPa of the cumulative
annual precipitation in the baseline and post-baseline periods were 196.36 mm/yr and
233.09 mm/yr, respectively. The SEb and SEa of the cumulative annual potential evapotran-
spiration in the baseline and post-baseline periods were 386.42 mm/yr and 409.93 mm/yr,
respectively. The results indicated that the annual runoff depth, precipitation, and potential
evapotranspiration showed increasing trends during the whole period. The sum of the
changes in P and ET0 was less than the change in R, indicating that the runoff generation
and confluence processes were also affected by non-climatic factors.

Based on the results in Table 3 and the principle of the SCRCQ method, the impacts of P
and ET0 on R were 32.52% and 10.57%, respectively, which indicated that the contributions
of climatic and human factors to the runoff change were 43.09% and 56.91%, respectively.
In conclusion, the impacts of climatic and human factors on runoff change have generally
been the same in the past 50 years.
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Table 3. Slope of accumulative meteorological elements in the Upper Shule River from 1972 to 2021.

Period Slope of Cumulative Runoff
Depth (mm)

Slope of Cumulative
Precipitation (mm)

Slope of Cumulative Potential
Evapotranspiration (mm)

Baseline period 79.91 196.36 386.42
Post-baseline period 125.89 233.09 409.93

Variation 45.98 36.73 23.51
Rate of change 57.54% 18.71% 6.08%

3.3.2. Quantitative Analysis of the Causes of Runoff Change Based on the Climate
Elasticity Method

During the baseline period, the mean values of P, ET0 and, R in the Upper Shule River
were 195.6 mm, 388.9 mm, and 80.6 mm, respectively. During the post-baseline period,
the mean values of P, ET0, and R were 225.1 mm, 410.1 mm, and 125.0 mm, respectively.
The results indicated that the mean values of annual precipitation, annual potential evap-
otranspiration and annual runoff depth increased by 29.5 mm, 21.2 mm, and 44.4 mm,
respectively. According to Equations (25)–(27), the drying index of the Upper Shule River
was 1.90, the actual evaporation function was 0.8851, and the sensitivity of the annual runoff
depth to precipitation (εP) and potential evapotranspiration (εET0) were 2.67 and –1.67,
respectively (Table 4). The results showed that a 1% increase in precipitation would lead to
a 2.67% increase in runoff depth, whereas a 1% increase in potential evapotranspiration
would lead to a 1.1% decrease in runoff depth. Hence, precipitation and potential evapo-
transpiration caused the runoff depth to increase by 29.3 mm, whereas human activities
caused the runoff depth to increase by 15.1 mm. In summary, the effects of climatic and
human factors on runoff variation were 66.13% and 33.86%, respectively, which indicated
that climate change was the main factor driving runoff change in the Upper Shule River.

Table 4. Calculation results of the relevant parameters based on the climate elasticity method.

Parameter Name φ F (φ) εP εET0 ∆Qc

Calculation results 1.90 0.8851 2.67 −1.67 29.3

Note: φ is the drying index; F (φ) is the actual evaporation function; ∆Qc is the change of runoff between baseline
and post-baseline periods.

3.3.3. Quantitative Analysis of the Causes of Runoff Change Based on the
Budyko Equation

Based on the Budyko equation and the relevant parameters (Table 5), the effects of
P, ET0, and n on R were 83.88%, –17.87%, and 33.99%, respectively. Thus, the impacts of
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climatic and human factors on runoff variation were 66.01% and 33.99%, respectively. The
climate change was the main cause of runoff variation in the Upper Shule River.

Table 5. Characteristic values of hydrological element parameters based on the Budyko equation.

Period n εP εET0 εn

Baseline period 0.86 2.37 −1.37 −0.53
Post-baseline period 0.65 2.23 −1.23 −0.43

Entire period 0.73 2.31 −1.31 −0.49
AP−∆R 83.88

AET0−∆R −17.35
An−∆R 33.47

4. Discussion
4.1. Attribution of Runoff Change

The runoff in the Upper Shule River Basin is important to the economic and social
development of the arid regions in the middle and lower reaches [19–21]. The runoff in the
Upper Shule River showed a significant increasing trend from 1972 to 2021, and climate
change was the dominant influencing factor on runoff change, which was consistent with
previous studies [26,27]. Some researchers pointed out that runoff sensitivity (εP,

∣∣εET0

∣∣,
and |εn|) are greater in areas with a drier climate [45]. In this study, the values of εP,

∣∣εET0

∣∣,
and |εn| range from 2.12 to 2.46, 1.12 to 1.46, and 0.37 to 0.59, respectively, which indicated
that runoff sensitivity to climate change were greater than human activities. The literature
reported that runoff is becoming gradually less sensitive to the climate conditions and
underlying surface changes [46], which was consistent with our results.

The main climatic factors influencing change in runoff are precipitation, temperature,
and potential evapotranspiration. Under the background of climate change from warm
and dry to warm and wet [47], the change trend of annual precipitation increased from
−11.6 mm/10a (baseline period) to 15.82 mm/10a (post-baseline period), the change trend of
annual mean temperature decreased from 0.35 ◦C/10a (baseline period) to 0.11 ◦C/10a (post-
baseline period), and the change trend of annual potential evapotranspiration decreased
from 4.74 mm/10a (baseline period) to 0.24 mm/10a (post-baseline period) (Figure 8). The
temperature, precipitation, and potential evapotranspiration all increased in the study area
during the entire study period. However, the increase in precipitation alleviated the melting
of glaciers caused by the increase in temperature, so the influence of precipitation on runoff
was greater than that of temperature. This finding is consistent with the conclusion that
precipitation was the main reason for the increase in runoff in most basins in China [48,49].
In addition to climate change, human activities have also played a significant role in runoff
change in the Upper Shule River.

The dominant land use types of Upper Shule River were unused land and grass-
land. There were two main trends of land use changes during 1990–2015: the decrease
in grassland and the increase in unused land (23 km2 and 22 km2, respectively) (Table 6).
However, the area changes in grassland coverage and unused land were only 0.26% and
0.16%, respectively, which contributed a small part to the increase in runoff. The literature
reports that the area of grassland decreased, and the area of unused land increased, which
promoted an increase in runoff [6]. Furthermore, the population density in the Upper Shule
River was low during 1990–2015 (Figure 9). The changes in population density and the
land use types indicated that human activities were not dominant in the Upper Shule River.
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Table 6. Land use changes in the Upper Shule River from 1990 to 2015 (km2).

Land Use Type
1990 2015

Area of Change
Area Proportion (%) Area Proportion (%)

Cultivated land 1 0.01 2 0.02 1
Woodland 77 0.72 75 0.70 −2
Grassland 5322 49.99 5299 49.73 −23

Water 82 0.77 92 0.86 10
Urban and rural industrial and

mining land 0 0 1 0.01 1

Unused land 5164 48.51 5186 48.67 22

4.2. Comparison of the Results from Different Attribution Methods

Table 7 shows the results of quantifying the causes of runoff change based on three
methods. According to the SCRCQ method, human activities were considered the main in-
fluencing factors on runoff change. The method revealed that potential evapotranspiration
caused runoff to increase, contributing 10.57% to runoff change. In contrast, the climate
elasticity method and the Budyko equation showed that P was the main contributor to
runoff change, and the potential evapotranspiration caused runoff to decrease. Watershed
water storage (∆S) is regarded as a constant when analysing the attribution of runoff change
based on the Budyko equation. At this time, the human activities causing runoff change
were mainly attributed to changes in land/vegetation cover [50]. The literature reported
that it may take more than 10 years for watersheds in semi-arid and arid regions to reach
steady states [51]. The n values under the three conditions based on the 11-, 15-, and
31-year sliding average data of R, P, and ET0, respectively, were calculated (Figure 10). The
mean values and slopes of n exhibited little change under the different moving windows.
The results indicated that the step size of the sliding average of n had little effect on its
long-term trend. Therefore, the Upper Shule River was generally in a steady-state condition.
Thus, the contribution of quantitative influencing factors to runoff change based on the
Budyko equation is reliable. The relevant contributions of the Budyko equation and the
climate elasticity method were basically the same (Table 7). Overall, the consistent results
of contribution quantification are helpful for clarifying the mechanism of runoff increase
in the study area. The quantitative results showed that climate change was the dominant
driver on runoff change.
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Table 7. Comparison of contributions to runoff change based on different calculation methods in the
Upper Shule River during 1972–2021.

Method Contribution of Precipitation (%) Contribution of Potential
Evapotranspiration (%)

Contribution of Human
Activities (%)

SCRCQ method 32.52 10.57 56.91
Climate elasticity method 85.68 −19.54 33.86

Budyko equation 83.88 −17.35 33.47

Studies have shown that the contribution of climate change to runoff change is related
to elevation [52]. The Upper Shule River is an alpine area. Rising temperatures have
increased the supply of glacial snowmelt and snow to rivers with global warming [53].
Studies have indicated that the hydrological processes in high-elevation areas are primarily
controlled by water volume [52]. As altitude increases, snowfall transitions to rainfall, and
precipitation also rises. Of the three methods, the contribution of human activities estimated
by the SCRCQ method was relatively large. The limited meteorological data availability in
the study area is due to the presence of only one meteorological station and the resulting
lack of statistical precipitation data. Therefore, it is necessary to supplement the analysis
data with remote sensing data in the future to gain a more accurate understanding of the
runoff change mechanism in the Upper Shule River.

5. Conclusions

Based on previous studies, this study adopted different methods to decompose the
causes of runoff change in the Upper Shule River. Focusing on the changes in runoff
sensitivity, the direct and indirect effects of driving factors on runoff change are discussed.
The major conclusions are summarized as follows:

(1) The annual runoff depth experienced a significant abrupt change in 1998. Before
1998, the annual runoff depth showed a downward trend. After 1998, the runoff depth
showed an upward trend.

(2) The runoff sensitivity changed with a downward trend. n was the main contributor
to the change in runoff sensitivity, followed by P, with ET0 having the weakest effect.

(3) The SCRCQ method, climate elasticity method, and Budyko equation were used to
determine the causes of runoff change. The results showed that climate change was the
main influencing factor on runoff change in the Upper Shule River.

(4) The increase in runoff in the Upper Shule River was mainly caused by the indirect
influence of driving factors (changes in runoff sensitivity).

In summary, this paper integrated the direct and indirect impacts of P, ET0, and n
on runoff change and used different runoff change attribution methods to compare and
verify the results. This study will provide a useful reference for water resources allocation
against climate warming in the Upper Shule River basin. However, the lack of sufficient
meteorological data may adversely affect the results of attribution analysis. Meanwhile, the
different mechanisms of the methodologies may make the findings of this study are only
applicable to the Upper Shule River. Therefore, future research should focus on innovating
and optimizing runoff attribution research methods and comprehensively exploring the
complex relationship between runoff and environmental changes.
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