Simultaneous Synthesis of Single- and Multiple-Contaminant Water Networks Using LINGO and Excel Software
Abstract
:1. Introduction
2. Methods
3. Case Studies
3.1. Case Study 1
3.2. Case Study 2
4. Results and Discussions
4.1. Results and Discussion for Case Study 1
4.2. Results and Discussion for Case Study 2
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Galan, B.; Grossmann, I.E. Optimal Design of Distributed Wastewater Treatment Networks. Ind. Eng. Chem. Res. 1998, 37, 4036–4048. [Google Scholar] [CrossRef]
- Gabriel, B.; El-Halwagi, M. Simultaneous Synthesis of Waste Interception and Material Reuse Networks: Problem Reformulation for Global Optimization. Am. Inst. Chem. Eng. 2005, 24, 171–180. [Google Scholar] [CrossRef]
- Faria, D.C.; Bagajewicz, M. A new approach for the design of multicomponent water/wastewater networks. Comput. Aided Chem. Eng. 2008, 4, 43–48. [Google Scholar] [CrossRef]
- Galan, B.; Grossmann, I.E. Optimal Design of Real-World Industrial Wastewater Treatment Networks. Comput. Aided Chem. Eng. 2011, 37, 1251–1255. [Google Scholar] [CrossRef]
- Buabeng, E.; Majozi, T. Effective Synthesis and Optimization Framework for Integrated Water and Membrane Networks: A Focus on Reverse Osmosis Membranes. Ind. Eng. Chem. Res. 2015, 54, 9394–9406. [Google Scholar] [CrossRef]
- Padron, J.I.; Almaraz, S.; Martinez, A.R. Sustainable Wastewater Treatment Plants Design Through Multi objective Optimization. Comput. Chem. Eng. 2020, 140, 106–122. [Google Scholar] [CrossRef]
- Nejad, S.M.; Ataei, A.; Reza, G.; Mehrdadi, N.; Ebadati, F.; Lotfi, F. Water Pinch Analysis for Water and Wastewater Minimization in Tehran Oil Refinery Considering Three Contaminants. Environ. Monit. Assess. 2012, 184, 2709–2728. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.; Rodrigues, M.A.; Aragao, M.E.; Aquim, P.M. Water and Wastewater Minimization in a petrochemical Industry Through Mathematical Programming. J. Clean. Prod. 2017, 12, 959–981. [Google Scholar] [CrossRef]
- Li, Z.; Majozi, T. Optimal Design of Batch Water Network with a Flexible Scheduling Framework. Ind. Eng. Chem. Res. 2019, 58, 9500–9511. [Google Scholar] [CrossRef]
- Mohammad, A.; Ahmadi, A.; Mirzapour, S.M. Sustainable closed-loop Supply Chain Network for an Integrated Water Supply and Wastewater Collection System Under Uncertainly. J. Environ. Manag. 2020, 275, 111–128. [Google Scholar] [CrossRef]
- Arola, K.; Manttari, M.; Kallioinen, M. Two-Stage Nanofiltration for Purification of Membrane Bioreactor Treated Municipal Wastewater—Minimization of Concentrate Volume and Simultaneous Recovery of Phosphorus. Sep. Purif. Technol. 2020, 20, 317–344. [Google Scholar] [CrossRef]
- Chin, H.H.; Jia, X.; Sabev, P.; Klemes, J.; Liu, Z.Y. Internal and Total Site Water Network Design with Water Mains Using Pinch-Based and Optimization Approaches. ACS Sustain. Chem. Eng. 2021, 9, 6639–6658. [Google Scholar] [CrossRef]
- Tuba, D.; Ozel, S.; Bulkan, S. Water and energy minimization in industrial processes through mathematical programming: A literature review. J. Clean. Prod. 2021, 284, 124752. [Google Scholar] [CrossRef]
- Ho, L.Y.; Cheah, Y.T.; Chan, Y.J.; Chan, Y.J.; Wan, Y.K. Water Stress Reduction Using Superstructure-Based Mathematical Model: Synthesise a Wastewater Treatment Plant Associated with Nutrient Recovery for Palm Oil Industry. Process Integr. Optim. Sustain. 2024, 8, 393–405. [Google Scholar] [CrossRef]
- Liang, Y.; Weijun, H.; Dagmawi, M.; Wan, Z.; Thomas, S.; Xia, W. A system dynamics simulation model for water conflicts in the Zhanghe River Basin, China. Int. J. Water Resour. Dev. 2023, 39, 1039–1055. [Google Scholar] [CrossRef]
- Gajendra, K.; Ram, S.; Canxing, F.; Kuppusamy, S.; Fuchun, Z.; Tariq, M.; Karolina, K.; Xiang, G.; Xinghui, L.; Wesam, A. Development of optimum waste water using network. Energy 2024, 297, 131297. [Google Scholar] [CrossRef]
- Irene, M.L.; Dominic, C.Y. Flowrate Targeting Algorithm for Interplant Resource Conservation Network. Part 2: Assisted Integration Scheme. Ind. Eng. Chem. Res. 2010, 49, 6456–6468. [Google Scholar] [CrossRef]
- Sahu, G.C.; Garg, A.; Majozi, T.; Bandyopadhyay, S. Optimum Design of Waste Water Treatment Network. Ind. Eng. Chem. Res. 2013, 52, 5161–5171. [Google Scholar] [CrossRef]
- Farrag, N.M.; Kamel, D.A.; Ghallab, A.O.; Gadalla, M.A.; Fouad, M.K. Graphical Design and Analysis of Mass Exchange Networks Using Composition Driving Forces. South Afr. J. Chem. Eng. 2021, 36, 94–104. [Google Scholar] [CrossRef]
- Yamin, Y.; Yan, W.; Jie, Y.; Zhengguang, L.; Qi, L.; Bohong, W. Tech-economic modeling and analysis of agricultural photovoltaic-water systems for irrigation in arid areas. J. Environ. Manag. 2023, 338, 117858. [Google Scholar] [CrossRef]
- Pranit, D.; Kul, V.; Vijendra, K.; Aneesh, M. Water distribution system modelling of GIS-remote sensing and EPANET for the integrated efficient design. J. Hydroinformatics 2024, 26, 567–588. [Google Scholar] [CrossRef]
- Khezri, S.M.; Lotfi, F.; Tabibian, S.; Erfani, Z. Application of water pinch technology for water and wastewater minimization in aluminum anodizing industries. Int. J. Environ. Sci. Tech. 2010, 7, 281–290. [Google Scholar] [CrossRef]
- Mughees, W.; Al-Ahmad, M. Application of water pinch technology in minimization of water consumption at a refinery. Comput. Chem. Eng. 2015, 73, 34–42. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Yang, Y.Z.; Zhang, Y. Determination the pinch point and calculating the freshwater target for water-using systems with single contaminant. Chem. Eng. Res. Des. 2007, 85, 1485–1490. [Google Scholar] [CrossRef]
- Chin, H.H.; Liew, P.Y.; Varbanov, P.S.; Klemes, J.J. Extension of pinch analysis to targeting and synthesis of water recycling networks with multiple contaminants. Chem. Eng. Sci. 2022, 248, 117223. [Google Scholar] [CrossRef]
- Kim, Y.; Lim, J.; Shim, J.Y.; Lee, H.; Cho, H.; Kim, J. Optimizing wastewater heat recovery systems in textile dyeing processes using pinch analysis. Appl. Therm. Eng. 2022, 214, 118880. [Google Scholar] [CrossRef]
- Skouteris, G.; Ouki, S.; Foo, D.; Saroj, D.; Altini, M.; Melidis, P.; Cowley, B.; Ells, G.; Palmer, S.; Odell, S. Water footprint and water pinch analysis techniques for sustainable water management in the brick-manufacturing industry. J. Clean. Prod. 2018, 172, 786–794. [Google Scholar] [CrossRef]
- Souifi, M.; Souissi, A. Simultaneous water and energy saving in cooling water networks using pinch approach. Mater. Today Proc. 2019, 13, 1115–1124. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, M.; Liu, G.; Feng, X. Relative concentration based pinch analysis for targeting and design of hydrogen and water networks with single contaminant. J. Clean. Prod. 2016, 112, 4799–4814. [Google Scholar] [CrossRef]
- Deng, C.; Feng, X.; Sum, D.K.; Foo, D.C.Y. Process-based Graphical approach for simultaneous targeting and design of water network. AIChE J. 2011, 57, 3085–3104. [Google Scholar] [CrossRef]
- Mabitla, S.S.; Majozi, T. A hybrid method for synthesis of integrated water and regeneration networks with variable removal ratios. J. Environ. Manag. 2019, 231, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Quintero, V.; Quiroga, A.G.; Delgado, A.D.G. A hybrid methodology to minimize freshwater consumption during shrimp shell waste valorization combining multi-contaminant pinch analysis and superstructure optimization. Polymers 2021, 13, 1887. [Google Scholar] [CrossRef] [PubMed]
- Karthick, R.; Kumaraprasad, G.; Sruti, B. Hyprid optimization approach for water allocation and mass exchange network. Resour. Conserv. Recycl. 2010, 54, 783–792. [Google Scholar] [CrossRef]
- Cao, K.; Feng, X.; Ma, H. Pinch multi-agent genetic algorithm for optimizing water-using networks. Comput. Chem. Eng. 2007, 31, 1565–1575. [Google Scholar] [CrossRef]
- Esmaeeli, A.; Sarrafzadeh, M.H. Reducing freshwater consumption in pulp and paper industries using pinch analysis and mathematical optimization. J. Water Process Eng. 2023, 53, 10364. [Google Scholar] [CrossRef]
Sources | Flowrate (m3/h) | H2SiF6 (wt%) | H2SO4 (wt%) | P2O5 (wt%) |
---|---|---|---|---|
Source 1 (condenser of phosphoric acid plant) | 280 | 14 | 0.3 | 4 |
Source 2 (reaction vacuum pump 1 of phosphoric acid plant) | 15 | 8 | 0.1 | 3 |
Source 3 (filter vacuum pump 1 of phosphoric acid plant) | 18 | 8 | 0.1 | 3 |
Source 4 (filter vacuum pump 2 of phosphoric acid plant) | 18 | 8 | 0.1 | 3 |
Source 5 (separator of phosphoric acid plant) | 20 | 30 | 0.5 | 4 |
Source 6 (cooling water of phosphoric acid plant) | 120 | 10 | 0.6 | 5 |
Source 7 (cooling water of single-superphosphate plant) | 160 | 12 | 0.4 | 5 |
Source 8 (condenser of the concentrated unit in phosphoric acid plant) | 250 | 20 | 0.2 | 4 |
Sinks | Flowrate (m3/h) | H2SiF6 (wt%) | H2SO4 (wt%) | P2O5 (wt%) |
---|---|---|---|---|
Sink 1 (dilution mixer of sulfuric acid in phosphoric acid plant) | 10 | 12 | 0.5 | 4.5 |
Sink 2 (dilution mixer of sulfuric acid in single-superphosphate plant) | 140 | 12 | 0.8 | 3.69 |
Sink 3 (washing filter cake in phosphoric acid plant) | 50 | 10 | 3 | 5 |
Sink 4 (gas scrubber in phosphoric acid plant) | 280 | 14 | 3 | 5 |
Sink 5 (gas scrubber in single-superphosphate plant) | 280 | 16 | 3 | 6 |
Sink 6 (gas scrubber in triple-superphosphate plant) | 180 | 11 | 3 | 5 |
Sink 7 (washing filter in phosphoric acid plant) | 70 | 14 | 5 | 4 |
Sources | Flowrate (m3/h) | COD (mg/L) | Sinks | Flowrate (m3/h) | COD (mg/L) |
---|---|---|---|---|---|
Clarified water | 1131 | 0 | Cooling water 1 | 717 | 3.7 |
Filtered water | 21 | 0 | Cooling water 2 | 277 | 4.7 |
Cooling water 1 | 717 | 30 | Cooling water 3 | 92 | 5.8 |
Cooling water 2 | 277 | 25 | Cooling water 4 | 45 | 6.1 |
Cooling water 3 | 92 | 25 | Bearing water 1 | 6 | 14.7 |
Cooling water 4 | 45 | 25 | |||
Bearing water 1 | 6 | 20 | Bearing water 2 | 15 | 3.5 |
Bearing water 2 | 15 | 20 |
Stream | Flowrate (m3/h) | Stream | Flowrate (m3/h) | Stream | Flowrate (m3/h) |
---|---|---|---|---|---|
FW | 129 | G4–6 | 9.0697 | G8–2 | 42.29 |
GWaste | Zero | G5–4 | 2.7824 | G8–3 | 19.84 |
G1–2 | 25.966 | G5–5 | 17.217 | G8–4 | 59.69 |
G1–4 | 93.598 | G6–4 | 68.7 | G8–5 | 78.04 |
G1–5 | 65.056 | G6–5 | 37.34 | G8–6 | 44.15 |
G1–6 | 25.378 | G6–6 | 13.97 | FW1 | 4.0201 |
G1–7 | 70 | G7–2 | 23.15 | FW2 | 24.8 |
G2–2 | 5.9302 | G7–3 | 8.425 | FW3 | 21.738 |
G2–6 | 9.0697 | G7–4 | 41.05 | FW4 | 14.175 |
G3–2 | 8.9302 | G7–5 | 55.66 | FW5 | 26.684 |
G3–6 | 9.0697 | G7–6 | 31.71 | FW6 | 37.581 |
G4–2 | 8.9302 | G8–1 | 5.98 |
Sinks | Sources Flowrates (m3/h) Distributed between Sinks and Waste | |||||||
---|---|---|---|---|---|---|---|---|
S1 (Clarified Water) | S2 (Filtered Water) | S3 (Cooling Water 1) | S4 (Cooling Water 2) | S5 (Cooling Water 3) | S6 (Cooling Water 4) | S7 (Bearing Water 1) | S8 (Bearing Water 2) | |
K1 | 623.57 | 0 | 78.43 | 0 | 0 | 0 | 0 | 15 |
K2 | 233.6 | 0 | 43.4 | 0 | 0 | 0 | 0 | 0 |
K3 | 57.213 | 15 | 13.79 | 0 | 0 | 0 | 6 | 0 |
K4 | 35.85 | 0 | 9.15 | 0 | 0 | 0 | 0 | 0 |
K5 | 3.06 | 0 | 2.94 | 0 | 0 | 0 | 0 | 0 |
K6 | 13.25 | 0 | 1.75 | 0 | 0 | 0 | 0 | 0 |
Waste | 0 | 0 | 567.54 | 277 | 92 | 45 | 0 | 0 |
Source Total Flowrate | 966.54 | 15 | 717 | 277 | 92 | 45 | 6 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoaib, A.M.; Atawia, A.A.; Hassanean, M.H.; Gadallah, A.G.; Bhran, A.A. Simultaneous Synthesis of Single- and Multiple-Contaminant Water Networks Using LINGO and Excel Software. Water 2024, 16, 1244. https://doi.org/10.3390/w16091244
Shoaib AM, Atawia AA, Hassanean MH, Gadallah AG, Bhran AA. Simultaneous Synthesis of Single- and Multiple-Contaminant Water Networks Using LINGO and Excel Software. Water. 2024; 16(9):1244. https://doi.org/10.3390/w16091244
Chicago/Turabian StyleShoaib, Abeer M., Amr A. Atawia, Mohamed H. Hassanean, Abdelrahman G. Gadallah, and Ahmed A. Bhran. 2024. "Simultaneous Synthesis of Single- and Multiple-Contaminant Water Networks Using LINGO and Excel Software" Water 16, no. 9: 1244. https://doi.org/10.3390/w16091244
APA StyleShoaib, A. M., Atawia, A. A., Hassanean, M. H., Gadallah, A. G., & Bhran, A. A. (2024). Simultaneous Synthesis of Single- and Multiple-Contaminant Water Networks Using LINGO and Excel Software. Water, 16(9), 1244. https://doi.org/10.3390/w16091244