Multiscale Analysis of Water Area, Level and Flow and Their Relationships for a Large Lake Connected to Rivers: A Case Study of Dongting Lake, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.2.1. Surface Water Data
2.2.2. Water Level and Water Flow Data
2.2.3. Anomaly Calculation
2.3. Wavelet Analysis of Water Area, Level and Flow Anomalies
2.4. Correlation Analysis of Water Area and Water Level and Flow
3. Results
3.1. Multiscale Characteristics of the Water Area
3.1.1. Spatial Patterns of Surface Water
3.1.2. Water Surface Area Anomalies
3.1.3. Wavelet Variance of Water Area Anomalies
3.2. Multiscale Characteristics of Water Level and Water Flow
3.2.1. Water Level and Water Flow Anomalies
3.2.2. Wavelet Variance of Water Level and Water Flow Anomalies
3.3. Water Level–Area and Flow–Area Variations of Dongting Lake
3.3.1. Water Level–Area and Flow–Area Variations at the Annual Scale
3.3.2. Water Level–Area and Flow–Area Variations on the Seasonal Scale
3.3.3. Water Level–Area and Flow–Area Variations at the Monthly Scale
3.4. Water Level–Area and Flow–Area Correlation Models for Dongting Lake
3.4.1. Tenfold Cross-Validation Accuracy
3.4.2. Fitting Curves of Level–Area and Flow–Area Correlations
4. Discussion
4.1. Water Area, Level and Flow Variations and the Hydrological Processes in Dongting Lake
4.2. Water Level–Area, Flow–Area and River-Lake Correlations
4.3. Limitations and Future Researches
5. Conclusions
- (1)
- The variations in the annual, seasonal, and monthly water area anomalies from 2000 to 2021 exhibited rather consistent overall trends, but the differences in the variation ranges were relatively notable at the different temporal scales. The periodic patterns of the area anomalies also varied with scale; the dominant amplitudes of the annual and seasonal area anomalies ranged from 8a to 11a, while the dominant amplitudes of the monthly anomalies were much greater.
- (2)
- The variations in annual, seasonal, and monthly water level and water flow anomalies from 2000 to 2021 demonstrated different trends among the hydrologic stations. Chenglingji station had the largest variation range among the stations. The dominant amplitudes of the water level and flow anomalies at the different time scales generally followed the order of annual < seasonal < monthly. They ranged from 3a to 5a at the annual scale, while they could be much larger and more variable between seasons, months and stations at seasonal and monthly scales.
- (3)
- The water level–area and water flow–area correlations varied with temporal scale and station. They were most strongly correlated at Chenglingji station, followed by Taoyuan and then by Taojiang and Shimen stations, and they were most strongly correlated on the seasonal scale, followed by the monthly and annual scales. The best performing annual, seasonal, and monthly level–area and flow–area models for Chenglingji station were the exponential, quadratic polynomial, and quadratic polynomial models and the exponential, linear, and linear models, respectively.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brunner, P.; Simmons, C.T.; Cook, P.G. Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater. J. Hydrol. 2009, 376, 159–169. [Google Scholar] [CrossRef]
- Gardner, J.R.; Pavelsky, T.M.; Doyle, M.W. The Abundance, Size, and Spacing of Lakes and Reservoirs Connected to River Networks. Geophys. Res. Lett. 2019, 46, 2592–2601. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Colman, S.M.; Lowell, T.V.; Milne, G.A.; Fisher, T.G.; Breckenridge, A.; Boyd, M.; Teller, J.T. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago. Science 2010, 328, 1262–1266. [Google Scholar] [CrossRef] [PubMed]
- Woolway, R.I.; Verburg, P.; Lenters, J.D.; Merchant, C.J.; Hamilton, D.P.; Brookes, J.; de Eyto, E.; Kelly, S.; Healey, N.C.; Hook, S.; et al. Geographic and temporal variations in turbulent heat loss from lakes: A global analysis across 45 lakes. Limnol. Oceanogr. 2018, 63, 2436–2449. [Google Scholar] [CrossRef]
- Yao, F.; Livneh, B.; Rajagopalan, B.; Wang, J.; Cretaux, J.-F.; Wada, Y.; Berge-Nguyen, M. Satellites reveal widespread decline in global lake water storage. Science 2023, 380, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wu, W.; Zhou, X.; Chen, Y.; Li, J. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theor. Appl. Climatol. 2014, 119, 341–351. [Google Scholar] [CrossRef]
- Odongo, V.O.; van der Tol, C.; van Oel, P.R.; Meins, F.M.; Becht, R.; Onyando, J.; Su, Z. Characterisation of hydroclimatological trends and variability in the Lake Naivasha basin, Kenya. Hydrol. Processes 2015, 29, 3276–3293. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Ptak, M. Water level changes in Polish lakes during 1976–2010. J. Geogr. Sci. 2016, 26, 83–101. [Google Scholar] [CrossRef]
- Ye, X.; Xu, C.-Y.; Zhang, Q.; Yao, J.; Li, X. Quantifying the Human Induced Water Level Decline of China’s Largest Freshwater Lake from the Changing Underlying Surface in the Lake Region. Water Resour. Manag. 2017, 32, 1467–1482. [Google Scholar] [CrossRef]
- Yadav, B.; Eliza, K. A hybrid wavelet-support vector machine model for prediction of Lake water level fluctuations using hydro-meteorological data. Measurement 2017, 103, 294–301. [Google Scholar] [CrossRef]
- Huang, F.; Ochoa, C.G.; Guo, L.; Wu, Y.; Qian, B. Investigating variation characteristics and driving forces of lake water level complexity in a complex river–lake system. Stoch. Env. Res. Risk A 2020, 35, 1003–1017. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Zhu, S.; Hu, W.; Zhang, H.; Zhou, X.; Peng, Z. Assessment of impacts of water transfer on lake flow and water quality in Lake Chaohu using a three-dimensional hydrodynamic-ecological model. J. Hydrol.-Reg. Stud. 2023, 46, 101333. [Google Scholar] [CrossRef]
- Shiri, J.; Shamshirband, S.; Kisi, O.; Karimi, S.; Bateni, S.M.; Hosseini Nezhad, S.H.; Hashemi, A. Prediction of Water-Level in the Urmia Lake Using the Extreme Learning Machine Approach. Water Resour. Manag. 2016, 30, 5217–5229. [Google Scholar] [CrossRef]
- Cheng, V.Y.S.; Saber, A.; Alberto Arnillas, C.; Javed, A.; Richards, A.; Arhonditsis, G.B. Effects of hydrological forcing on short- and long-term water level fluctuations in Lake Huron-Michigan: A continuous wavelet analysis. J. Hydrol. 2021, 603, 127164. [Google Scholar] [CrossRef]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. High-frequency remote monitoring of large lakes with MODIS 500m imagery. Remote Sens. Environ. 2012, 124, 234–241. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, X.; Zheng, H.; Li, J.; Wang, Z. Investigating changes in lake systems in the south-central Tibetan Plateau with multi-source remote sensing. J. Geogr. Sci. 2016, 27, 337–347. [Google Scholar] [CrossRef]
- Li, M.; Hong, L.; Guo, J.; Zhu, A. Automated Extraction of Lake Water Bodies in Complex Geographical Environments by Fusing Sentinel-1/2 Data. Water 2021, 14, 30. [Google Scholar] [CrossRef]
- Bonnema, M.; David, C.H.; Frasson, R.P.d.M.; Oaida, C.; Yun, S.H. The Global Surface Area Variations of Lakes and Reservoirs as Seen From Satellite Remote Sensing. Geophys. Res. Lett. 2022, 49, e2022GL098987. [Google Scholar] [CrossRef]
- Huang, W.; Wang, F.; Duan, W.; Tang, L.; Qin, J.; Meng, X. Image similarity-based gap filling method can effectively enrich surface water mapping information. ISPRS-J. Photogramm. Remote Sens. 2023, 202, 528–544. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS-J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Schlaffer, S.; Chini, M.; Dorigo, W.; Plank, S. Monitoring surface water dynamics in the Prairie Pothole Region of North Dakota using dual-polarised Sentinel-1 synthetic aperture radar (SAR) time series. Hydrol. Earth Syst. Sc. 2022, 26, 841–860. [Google Scholar] [CrossRef]
- Cai, X.; Gan, W.; Ji, W.; Zhao, X.; Wang, X.; Chen, X. Optimizing Remote Sensing-Based Level-Area Modeling of Large Lake Wetlands: Case Study of Poyang Lake. IEEE J-STARS 2015, 8, 471–479. [Google Scholar] [CrossRef]
- Long, Y.; Tang, R.; Wu, C.; Jiang, C.; Hu, S. Estimating Real-Time Water Area of Dongting Lake Using Water Level Information. Water 2019, 11, 1240. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Xu, Y.; Zhu, S.; Chen, X.; Geng, X.; Xiao, L.; Wan, W.; Cui, Y. A remote sensing-based area dataset for approximately 40 years that reveals the hydrological asynchrony of Lake Chad based on Google Earth Engine. J. Hydrol. 2021, 603, 126934. [Google Scholar] [CrossRef]
- Song, Q.; Zhao, R.; Fu, H.; Zhu, J.; Li, Y. Water Area Extraction and Water Level Prediction of Dongting Lake Based on Sentinel-1 Dual-Polarization Data Decomposition. Remote Sens. 2023, 15, 4655. [Google Scholar] [CrossRef]
- Dai, X.; Yang, G.; Wan, R.; Li, Y. The effect of the Changjiang River on water regimes of its tributary Lake East Dongting. J. Geogr. Sci. 2018, 28, 1072–1084. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, C.; Long, Y.; Deng, B.; Jiang, J.; Yang, Y.; Wu, Z. Study on the Water Level–Discharge Relationship Changes in Dongting Lake Outlet Section over 70 Years and the Impact of Yangtze River Backwater Effect. Water 2023, 15, 2057. [Google Scholar] [CrossRef]
- Yin, Y.; Xia, R.; Chen, Y.; Jia, R.; Zhong, N.; Yan, C.; Hu, Q.; Li, X.; Zhang, H. Non-steady state fluctuations in water levels exacerbate long-term and seasonal degradation of water quality in river-connected lakes. Water Res. 2023, 242. [Google Scholar] [CrossRef]
- Ou, C.; Li, J.; Zhou, Y.; Cheng, W.; Yang, Y.; Zhao, Z. Evolution characters of water exchange abilities between Dongting Lake and Yangtze River. J. Geogr. Sci. 2014, 24, 731–745. [Google Scholar] [CrossRef]
- Hu, C.; Fang, C.; Cao, W. Shrinking of Dongting Lake and its weakening connection with the Yangtze River: Analysis of the impact on flooding. Int. J. Sediment Res. 2015, 30, 256–262. [Google Scholar] [CrossRef]
- Guo, W.; Yang, H.; Zhou, H.; Wang, H. Synergistic changes in river-lake runoff systems in the Yangtze River basin and their driving force differences. Ecol. Inform. 2023, 75, 102069. [Google Scholar] [CrossRef]
- Wang, C.L.; Jiang, W.G.; Deng, Y.; Ling, Z.Y.; Deng, Y.W. Long Time Series Water Extent Analysis for SDG 6.6.1 Based on the GEE Platform: A Case Study of Dongting Lake. IEEE J-STARS 2022, 15, 490–503. [Google Scholar] [CrossRef]
- Cao, M.M.; Mao, K.B.; Shen, X.Y.; Xu, T.R.; Yan, Y.B.; Yuan, Z.J. Monitoring the Spatial and Temporal Variations in The Water Surface and Floating Algal Bloom Areas in Dongting Lake Using a Long-Term MODIS Image Time Series. Remote Sens. 2020, 12, 3622. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L.C.; Zhang, M.; Niu, Z.G.; Yao, R.; Yu, D.Q.; Li, C.A.; He, Q.H. Variation of water body in Dongting Lake from in situ measurements and MODIS observations in recent decades. Int. J. Digit. Earth 2021, 14, 959–984. [Google Scholar] [CrossRef]
- Liu, X.Q.; Wang, X.; Chen, K.L.; Li, D. Simulation and prediction of multi-scenario evolution of ecological space based on FLUS model: A case study of the Yangtze River Economic Belt, China. J. Geogr. Sci. 2023, 33, 373–391. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, S.Q.; Xia, J.; Zhan, C.S.; Cai, W.; Wang, W.Y.; Luo, X.G.; Chen, N.C.; Li, J. Analysis of drought and flood alternation and its driving factors in the Yangtze River Basin under climate change. Atmos. Res. 2022, 270, 106087. [Google Scholar] [CrossRef]
- Lu, C.; Jia, Y.F.; Jing, L.; Zeng, Q.; Lei, J.L.; Zhang, S.H.; Lei, G.C.; Wen, L. Shifts in river-floodplain relationship reveal the impacts of river regulation: A case study of Dongting Lake in China. J. Hydrol. 2018, 559, 932–941. [Google Scholar] [CrossRef]
- Cheng, J.X.; Xu, L.G.; Feng, W.J.; Fan, H.X.; Jiang, J.H. Changes in Water Level Regimes in China’s Two Largest Freshwater Lakes: Characterization and Implication. Water 2019, 11, 917. [Google Scholar] [CrossRef]
- Chen, M.H.; Zeng, S.D.; Yang, L.H.; Tang, X.Y.; Xia, J. Detailed attribution of long-term water exchange in the Yangtze-Poyang system at multiple time scales. J. Hydrol. 2022, 612, 128183. [Google Scholar] [CrossRef]
- Zhang, P.P.; Mao, J.Q.; Tian, M.M.; Dai, L.Q.; Hu, T.F. The Impact of the Three Gorges Reservoir on Water Exchange Between the Yangtze River and Poyang Lake. Front. Earth Sci. 2022, 10, 876286. [Google Scholar] [CrossRef]
Station 1 | Accuracy | Annual | Seasonal | Monthly | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line 2 | Exp | Log | Poly2 | Poly3 | Line | Exp | Log | Poly2 | Poly3 | Line | Exp | Log | Poly2 | Poly3 | ||
CLJ | R2 | 0.4 | 0.4 | 0.21 | 0.34 | 0.36 | 0.8 | 0.78 | 0.38 | 0.8 | 0.8 | 0.7 | 0.67 | 0.37 | 0.72 | 0.72 |
RMSE (m) | 0.92 | 0.92 | 1.05 | 0.97 | 0.95 | 1.39 | 1.43 | 2.42 | 1.37 | 1.38 | 1.89 | 1.95 | 2.71 | 1.81 | 1.81 | |
ARE (%) | 2.51 | 2.49 | 3.01 | 2.73 | 2.68 | 4.55 | 4.67 | 8.02 | 4.53 | 4.58 | 5.86 | 5.92 | 9.34 | 5.62 | 5.62 | |
SM | R2 | -- 3 | -- | -- | -- | -- | 0.18 | 0.18 | -- | 0.16 | 0.14 | 0.13 | 0.13 | -- | 0.13 | 0.11 |
RMSE (m) | 0.51 | 0.51 | 0.7 | 0.54 | 0.62 | 0.64 | 0.64 | 1.4 | 0.65 | 0.66 | 0.83 | 0.83 | 1.66 | 0.84 | 0.84 | |
ARE (%) | 0.69 | 0.69 | 1.12 | 0.75 | 0.84 | 0.95 | 0.95 | 2.38 | 0.97 | 0.98 | 1.14 | 1.13 | 2.68 | 1.13 | 1.14 | |
TJ | R2 | -- | -- | 0.08 | -- | -- | 0.07 | 0.07 | -- | 0.05 | 0.01 | 0.06 | 0.06 | -- | 0.03 | 0.05 |
RMSE (m) | 1.29 | 1.28 | 1.22 | 1.35 | 1.93 | 1.23 | 1.23 | 1.39 | 1.24 | 1.27 | 1.4 | 1.4 | 1.6 | 1.42 | 1.41 | |
ARE (%) | 3.03 | 3.01 | 2.9 | 3.2 | 3.98 | 2.86 | 2.85 | 3.13 | 2.9 | 2.97 | 3.22 | 3.21 | 3.67 | 3.25 | 3.22 | |
TY | R2 | 0.11 | 0.11 | 0.15 | 0.06 | -- | 0.3 | 0.3 | 0.3 | 0.29 | 0.27 | 0.22 | 0.22 | 0.23 | 0.2 | 0.21 |
RMSE (m) | 0.92 | 0.92 | 0.9 | 0.95 | 1 | 1.32 | 1.31 | 1.32 | 1.33 | 1.35 | 1.73 | 1.73 | 1.72 | 1.75 | 1.74 | |
ARE (%) | 2.1 | 2.09 | 2.03 | 2.21 | 2.37 | 3.14 | 3.14 | 3.1 | 3.22 | 3.23 | 3.85 | 3.82 | 3.86 | 3.87 | 3.89 |
Station 1 | Accuracy | Annual | Seasonal | Monthly | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Line 2 | Exp | Log | Poly2 | Poly3 | Line | Exp | Log | Poly2 | Poly3 | Line | Exp | Log | Poly2 | Poly3 | ||
CLJ | R2 | 0.28 | 0.29 | -- | 0.24 | 0.14 | 0.6 | 0.57 | 0.08 | 0.59 | 0.59 | 0.49 | 0.37 | 0.07 | 0.48 | 0.46 |
RMSE (m3/s) | 2059.37 | 2051.1 | 2515.51 | 2111.29 | 2253.39 | 2712.39 | 2809.49 | 4133.54 | 2769.59 | 2737.58 | 3580.58 | 3992.27 | 4829.63 | 3621.19 | 3686.84 | |
ARE (%) | 13.17 | 13.1 | 18.8 | 13.95 | 17.77 | 34.72 | 33.24 | 60.96 | 35.65 | 34.96 | 45.07 | 40.66 | 73.7 | 44.13 | 45.18 | |
SM | R2 | -- 3 | -- | -- | -- | -- | 0.14 | 0.08 | -- | 0.13 | 0.08 | 0.08 | 0.01 | 0.01 | 0.07 | 0.06 |
RMSE (m3/s) | 542.99 | 536.14 | 538.68 | 549.47 | 571.26 | 533.67 | 552.66 | 578.34 | 537.46 | 550.51 | 758.74 | 787.33 | 790.78 | 765.75 | 768.38 | |
ARE (%) | 66.91 | 56.34 | 71.67 | 73.28 | 74.04 | 207.87 | 145.3 | 245.49 | 211.34 | 213.09 | 364.75 | 227.16 | 420.23 | 369.33 | 370.83 | |
TJ | R2 | 0.11 | 0.12 | -- | 0.08 | -- | 0.16 | 0.13 | 0.02 | 0.12 | 0.15 | 0.1 | 0.03 | 0.02 | 0.07 | 0.07 |
RMSE (m3/s) | 374.93 | 372.84 | 413.15 | 381.13 | 440.21 | 430.96 | 439.77 | 465.75 | 441.04 | 433.44 | 617.66 | 640.94 | 643.89 | 627.3 | 624.62 | |
ARE (%) | 26.26 | 24.68 | 29.63 | 27.46 | 39.91 | 57.11 | 49.44 | 65.79 | 58.86 | 56.31 | 84.58 | 65.22 | 89.41 | 85.46 | 86.27 | |
TY | R2 | 0.1 | 0.04 | -- | 0.16 | 0.12 | 0.33 | 0.29 | 0.02 | 0.32 | 0.3 | 0.21 | 0.12 | 0.03 | 0.19 | 0.21 |
RMSE (m3/s) | 1206.35 | 1245.29 | 1302.56 | 1163.8 | 1190.47 | 1455.43 | 1501.33 | 1762.32 | 1469.67 | 1489.89 | 2121.65 | 2241.34 | 2358.8 | 2145.98 | 2126.2 | |
ARE (%) | 31.98 | 30.08 | 36.25 | 30.74 | 30.68 | 76.14 | 61.57 | 107.4 | 77.71 | 76.89 | 108.3 | 78.19 | 138.33 | 108.33 | 109.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Zhai, L.; Zou, B.; Sang, H. Multiscale Analysis of Water Area, Level and Flow and Their Relationships for a Large Lake Connected to Rivers: A Case Study of Dongting Lake, China. Water 2024, 16, 1198. https://doi.org/10.3390/w16091198
Xu S, Zhai L, Zou B, Sang H. Multiscale Analysis of Water Area, Level and Flow and Their Relationships for a Large Lake Connected to Rivers: A Case Study of Dongting Lake, China. Water. 2024; 16(9):1198. https://doi.org/10.3390/w16091198
Chicago/Turabian StyleXu, Shan, Liang Zhai, Bin Zou, and Huiyong Sang. 2024. "Multiscale Analysis of Water Area, Level and Flow and Their Relationships for a Large Lake Connected to Rivers: A Case Study of Dongting Lake, China" Water 16, no. 9: 1198. https://doi.org/10.3390/w16091198
APA StyleXu, S., Zhai, L., Zou, B., & Sang, H. (2024). Multiscale Analysis of Water Area, Level and Flow and Their Relationships for a Large Lake Connected to Rivers: A Case Study of Dongting Lake, China. Water, 16(9), 1198. https://doi.org/10.3390/w16091198