Drought in the Po Valley: Identification, Impacts and Strategies to Manage the Events
Abstract
:1. Introduction
- Identifying past droughts that have been reported in the area and review the indicators employed to characterize the events;
- Analyzing the impacts of the identified extremes;
- Revising the management strategies implemented or proposed to better deal with droughts;
- Pointing out the literature gaps in both event identification, reported impacts and management strategies.
2. Materials and Methods
- The document must be published as a review or an article in a peer reviewed journal;
- The document must be written in English;
- The document must deal with the Po River and the valley surrounding the watercourse; therefore, the documents focused on the Poyang Lake (also known as Po Lake) located in China have been discarded, as well as those dealing with phosphates (PO) in rivers.
- Articles dealing with drought events identification and characterization;
- Articles describing the impacts of droughts;
- Articles proposing drought management strategies or evaluating their effectiveness.
3. Results and Discussion
3.1. Events Identification and Characterization
Event Date | Index/Indicator | Source (Event Identification) | Source (Impacts) |
---|---|---|---|
November 1920–December 1921 | SAS | [5,34] | |
March 1938 | SPI, River discharge | [18,24] | |
June–August 1943 | SAS, River discharge, NAO, SWE | [5,18,22,23,24] | |
November–December 1983 | SPI, SPEI | [19] | |
January–February 1989 | SPI-SPEI | [19] | |
May–June 1989 | SPI-SPEI, River discharge | [19,23] | |
July–November 1990 | SPI-SPEI, River discharge | [19,23] | |
November 1997–April 1998 | SPI-SPEI | [19] | |
June–September 1998 | SPI-SPEI | [19] | |
March–April 2002 | SPI-SPEI | [19] | |
August 2003–March 2004 | SPI-SPEI, River discharge, NAO, NDVI, LST | [19,20,22,23,35] | [36,37,38,39,40,41] |
May–August 2005 | SPI-SPEI, NDVI, LST, River discharge, NAO | [23,24] | [27,37,39] |
June–August 2006 | River discharge | [22,23,24,42] | [25,36,43,44] |
August–October 2007 | SPI-SPEI, NDVI, LST | [19] | [27,36,37,40] |
February–April 2012 | SPI-SPEI, NDVI, LST | [19] | [27,41] |
June–September 2012 | SPI, SPEI, SWE | [18,19] | [43] |
November 2015–February 2016 | [36,37,43,45] | ||
June–December 2017 | SPI-SPEI, NDVI, LST | [19], | [27,46,47] |
January–April 2019 | SWE | [18] | |
June–August 2020 | SPI-SPEI, NDVI, LST | [27] | |
May 2022–April 2023 | SWE, AI, River discharge | [13,14,18,48] | [9,26,49,50,51,52] |
Month | SFI1 | SFI3 | SPI1 | SPI3 | SCDDI | STI1 | STI3 | SPEI1 | SPEI3 | SVI1 |
---|---|---|---|---|---|---|---|---|---|---|
January 2022 | Near normal | Near normal | Near normal | Near normal | Near normal | Near normal | Como lake: moderate drought | |||
February 2022 | Piacenza:extreme drought; elsewhere moderate | Near normal | Moderate drought | Moderate drought | Moderate drought | Near normal | Near normal | Western area: moderate drought; elsewhere: near normal | Lake Maggiore: severe drought; Lake Iseo: severe drought; Lake Como: near normal; Lake Garda: near normal | |
March 2022 | Piacenza: extreme drought ; elsewhere: extreme drought | Northern area: moderate drought; elsewhere: near normal | North wesr: from moderate to severe drought ; elsewhere: near normal | North west: from moderate to severe drought | Near normal | Western area: moderate drought; elsewhere: near normal | Northen area: moderate drought; elsewhere: near normal | Lake Maggiore: extreme drought; Lake Como: moderate drought; Lake Iseo: moderate drought; Lake Garda: near normal | ||
April 2022 | Extreme drought | Piedmont and Lombardy: from moderate to severe drought; elsewhere: near normal | Piedmont and Lombardy: from moderate to severe drought; elsewhere: near normal | Near normal | Near normal | Western area: moderate drought; elsewhere: near normal | Southern part of Piedmont and Lombardy: moderate drought; elsewhere: near normal | Southern part of Piedmont and Lombardy: severe drought; elsewhere: moderate drought | Lake Maggiore: extreme drought; Lake Como: moderate drought; Lake Iseo: extreme drought; Lake Garda: near normal | |
May 2022 | Piacenza: extreme drought; elsewhere: moderate drought | Extreme drought | Northern area: moderate drought; elsewhere: near normal | Emilia Romagna: near normal; elsewhere: from moderate to extreme drought | Near normal | Western area: extreme drought; elsewhere: near normal | Western area: moderate drought; elsewhere: near normal | Lake Maggiore: severe drought; Lake Como: near normal; Lake Iseo: moderate drought; Lake Garda: moderate drought | ||
June 2022 | Extreme drought | Extreme drought | Western area: from moderate to severe drought; elsewhere: near normal | Moderate drought | Near normal | Southern Piedmont: extreme drought; Western area: moderate drought: elsewhere: severe drought | From moderate to extreme drought | Severe drought | Lombardy and Emilia-Romagna: extreme drought; elsewhere: severe drought | Lake Maggiore: severe drought; Lake Como: severe drought; Lake Iseo: severe drought; Lake Garda: moderate drought |
July 2022 | Extreme drought | Extreme drought | Eastern area: from moderate to severe drought; Valle d’Aosta: extreme drought; elsewhere: near normal | Moderate drought | Near normal | Piedmont and Lombardy: extreme drought; elsewhere: severe drought | Extreme drought | Severe drought | Severe drought | Severe drought |
August 2022 | Extreme drought | Extreme drought | Northern area: from moderate to severe drought; elsewhere: near normal | From moderate to severe drought | Near normal | Western area: moderate drought; elsewhere: near normal | North west: severe drought; elsewhere: moderate drought | Near normal | North west: from severe to extreme drought; elsewhere: near normal | Lake Maggiore: severe drought; Lake Como: extreme drought; Lake Iseo: severe drought; Lake Garda: severe drought |
September 2022 | Extreme drought | Extreme drought | Near normal | North west: from moderate to severe drought; elsewhere: near normal | Near normal | Southern area: moderate drought; elsewhere: near normal | Western area: severe drought; elsewhere: near normal | Near normal | North west: from severe to extreme drought; elsewhere: near normal | Lake Maggiore: severe drought; Lake Como: near normal; Lake Iseo: severe drought; Lake Garda: severe drought |
October 2022 | Extreme drought | Extreme drought | Near normal | Central area: moderate drought; elsewhere: near normal | Near normal | Extreme drought | Westren area: from moderate to severe drought; elsewhere: near normal | Eastern area: extreme drought; elsewhere: near normal | Near normal | Lake Maggiore: moderate drought; Lake Como: near normal; Lake Iseo: moderate drought; Lake Garda: moderate drought |
November 2022 | ||||||||||
December 2022 | ||||||||||
January 2023 | Piacenza, Cremona and Pontelagoscuro: moderate drought: Boretto and Borgoforte: near normal | Moderate drought | South west: moderate drought; Emilia Romagna: from moderate to severe wet; elsewhere: near normal | South west: moderate drought; eastern area: moderate wet; elsewhere: near normal | Lombardy and Valle d’Aosta: from moderate to extreme drought; elsewhere: near normal | Northern area: severe drought; elsewhere: moderate drought | Moderate drought | Emilia-Romagna: moderate wet; elsewhere: near normal | Emilia-Romagna: moderate wet; elsewhere: near normal | Lake Maggiore: moderate drought; Lake Como: near normal; Lake Iseo: moderate drought; Lake Garda: severe drought |
February 2023 | Piacenza, Cremona and Pontelagoscuro: moderate drought: Boretto and Borgoforte: severe drought | Piacenza: extreme drought; Cremona and Pontelagoscuro: moderate drought; elsewhere: extreme drought | Northern area: extreme drought; elsewhere: near normal with wide areas in moderate drought conditions | South west: moderate drought; elsewhere: near normal | Near normal | Eastern area: from severe to extreme drought; elsewhere: near normal | Moderate drought | Near normal | Near normal | Lake Maggiore: moderate drought; Lake Como: near normal; Lake Iseo: moderate drought; Lake Garda: severe drought |
March 2023 | Piacenza, Cremona and Pontelagoscuro: extreme drought: Boretto and Borgoforte: severe drought | Piacenza, Cremona and Pontelagoscuro: extreme drought: Boretto and Borgoforte: severe drought | Near normal | Near normal | Near normal | Near normal | From moderate to extreme drought | Near normal | North west: moderate drought; elsewhere: near normal | Lake Maggiore: moderate drought; Lake Como: near normal; Lake Iseo: near normal; Lake Garda: extreme drought |
April 2023 | Extreme drought | Extreme drought | South east: from moderate to extreme drought; elsewhere: near normal | Moderate drought | Near normal | Piedmont: mderate drought; elsewhere: near normal | From moderate to extreme drought | Near normal | Souther area: severe drought; elsewhere: moderate drought | Lake Maggiore: moderate drought; Lake Como: near normal; Lake Iseo: near normal; Lake Garda: extreme drought |
May 2023 | Near normal | Emilia Romagna and Piedmont: extreme wet; elsewhere: moderate wet | Near normal | Near normal | Near normal | |||||
June 2023 | Near normal | Piacenza and Pontelagoscuro: severe drought; Cremona, Boretto and Borgoforte: moderate drought | Near normal | Emilia Romagna and Piedmont: extreme wet; Alps: moderate drought; elsewhere: moderate wet | Near normal | Piedmont and Lombardy: moderate drought; elsewhere: near normal | Near normal | Near normal | Emilia Romagna and Piedmont: extreme wet; elsewhere: near normal | Near normal |
July 2023 | Near normal | Near normal | ||||||||
August 2023 | Piacenza, Cremona and Pontelagoscuro: severe drought: Boretto: moderate drought; Borgoforte: near normal | Near normal | ||||||||
September 2023 | Near normal | Near normal | ||||||||
October 2023 | Near normal | Near normal | ||||||||
February 2023 | Near normal | Near normal |
3.2. Impact Analysis
- Impacts on agriculture (agricultural): reduction in crop yield, increase in water used for irrigation, etc.
- Impacts on the economy (economic): increase in commodities prices, changes in goods production practices, etc.
- Impacts on river hydrology (hydrological): interactions between the main river and the groundwater, changes in the water cycle, etc.
- Impacts on river ecology (ecological): change in nutrient concentration or in species density or behaviour, etc.
- Impacts on water pollution (pollution): increase in pollutant concentration in water, etc.
- Impacts on multiple sectors (multiple): more than one of the previously described impacts is reported.
3.3. Drought Management Strategies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Summary of the Reviewed Articles
Reference | Data Used | Reported Events | Group | Reported Impacts | Type of Impact |
---|---|---|---|---|---|
[27] | NDVI-EVI-LST from MODIS, SCIA database for precipitation and temperature | Events from 2000 to 2020 | Impact analysis | Impacts on vegetation | Ecological |
[48] | Precipitation ERA5, snowmelt IT-SNOW, River discharge Pontelagoscuro | 2022 | Event identification | ||
[26] | Aridity Index, precipitation (CHIRPS), VHI, ARPA Veneto | Summer 2022 | Impact analysis | Saltwater intrusion, yield decrease | Agriculture |
[49] | Water temperature and daily discharge at Pontelagoscuro (ARPA Emilia) | May–July 2022 | Impact analysis | Saltwater intrusion | Pollution |
[50] | Summer 2022 | Management strategies | |||
[51] | Summer 2022 | Management strategies | |||
[9] | EOBS | 2003, 2007, 2022 | Impact analysis | Yield decrease | Agriculture |
[44] | River discharge at Pontelagoscuro, NDVI (Landsat 5) | June–September 2006 | Impact analysis | Impacts on vegetation due to saltwater intrusion | Ecological |
[14] | Precipitation and temperature (ERA5), River discharge at Pontelagoscuro (ARPAE) | 2022 | Event identification | ||
[79] | Management strategies | ||||
[18] | Snow depth (stations), Precipitation and temperature (ERA5), River discharge (ARPAE) | 1949, 2012, 2019, 2022, 2023 | Impact analysis | Reduced groundwater recharge from snow | Hydrological |
[52] | Surface water (Landsat, Sentinel 1/2) | July 2022 | Impact analysis | Loss of permanent water bodies | Hydrological |
[13] | River discharge at Pontelagoscuro, Precipitation and temperature (ERA5) | 1943, 1945, 1950, 1976, 2003, 2005, 2006, 2007, 2012, 2022 | Event identification | ||
[58] | Precipitation and temperature (EOBS) | 2003, 2005, 2007 | Impact analysis | Yield reduction | Agriculture |
[5] | Streamflow (stations, global run-off data center) | 1921, 1943–1952 | Event identification | ||
[41] | Precipitation and temperature (ERA5) | 2003, 2012 | Impact analysis | 119 reported drought impactsin the database | Multiple |
[19] | Precipitation and temperature (SCIA database) | Events from 1965 to 2017 | Event identification | ||
[78] | 2003, 2006, 2007, 2017 | Management strategies | |||
[35] | Precipitation (EOBS), River discharge at Pontelagoscuro (ARPAE) | Event identification | |||
[46] | July 2017–January 2018 | Impact analysis | Drought was the overwhelming driver of the observed faunistic patterns | Ecological | |
[40] | River discharge at Pontelagoscuro (ARPAE) | 2003–2007 | Impact analysis | Drought causes a time-lag between the delivery of the pollutants from catchments and their accumulation | Pollution |
[20] | Precipitation and temperature (ARPAL, ARPAV, ARPAE, ARPAP) | 2003 | Event identification | ||
[56] | GI (Copernicus Land Monitoring Services, Sentinel 2, Natura 2000) | Impact analysis | Ecological | ||
[47] | 2017 | Impact analysis | Oxygen and hydrogen stable isotopes displayed a relation significantly different from that recorded in the previous investigation | Pollution | |
[36] | 2003, 2006, 2007, 2015 | Impact analysis | High transaction costs | Economic | |
[42] | River streamflow | Events from 1920 to 2010 | Event identification | ||
[37] | 2003, 2005–2007, 2012, 2015 | Impact analysis | Crop price increase for customers | Economic | |
[45] | River discharge at Pontelagoscuro | 2015 | Impact analysis | High electrical conductivity of water due to high concentrations of conservative ionic species | Ecological |
[43] | 2003, 2006, Summer–Autumns 2012, 2015 | Impact analysis | Salt crusts rich in nitrates | Pollution | |
[23] | River discharge | 1943, 1945, 1965, 1989–1990, 2003, 2005, 2006 | Event identification | ||
[38] | 2012 | Impact analysis | Saltwater intrusion | Ecological | |
[57] | Impact analysis | Limited isotopic variation in distinct hydrological periods (peak discharge in April, drought in August) | Pollution | ||
[60] | Impact analysis | Impacts on groundwater and aquifers | Hydrological | ||
[77] | Probabilistic forecast (REPS) | Management strategies | |||
[22] | River discharge at Pontelagoscuro | 1943, 2003, 2006 | Event identification | ||
[75] | Management strategies | ||||
[54] | Impact analysis | Alteration in peaks of phytoplankton abundance | Ecological | ||
[39] | 2003, 2005, 2007 | Impact analysis | Reduced nutrient supply in the basin | Pollution | |
[76] | Management strategies | ||||
[59] | Impact analysis | Deeper-rooted crops more tolerant to drought | Agriculture | ||
[24] | River discharge (ARPAE), NAO, rainfall (ISAC-CNR), LST | 1938, 1949, 2003, 2005, 2006 | Event identification | ||
[25] | January–June 2006 | Impact analysis | Absence of the spring development of phytoplankton | Ecological | |
[53] | Number of days without flow | Impact analysis | Impoverishment of the benthic coenoses, disappearance of many taxa | Ecological | |
[55] | Impact analysis | Presence of coleopters of the species Agabus paludosus within the interstitial zone of the streambed | Ecological |
References
- Autorità Distrettuale di Bacino del Po. Territorio di Competenza; Autorità Distrettuale di Bacino del Po: Parma, Italy, 2023. [Google Scholar]
- Vezzoli, R.; Mercogliano, P.; Pecora, S.; Zollo, A.; Cacciamani, C. Hydrological simulation of Po River (North Italy) discharge under climate change scenarios using the RCM COSMO-CLM. Sci. Total Environ. 2015, 521–522, 346–358. [Google Scholar] [CrossRef] [PubMed]
- Vallorani, R.; Bartolini, G.; Betti, G.; Crisci, A.; Gozzini, B.; Grifoni, D.; Iannuccilli, M.; Messeri, A.; Messeri, G.; Morabito, M.; et al. Circulation type classifications for temperature and precipitation stratification in Italy. Int. J. Climatol. 2018, 38, 915–931. [Google Scholar] [CrossRef]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving Air Quality in the Po Valley, Italy: Some Results by the LIFE-IP-PREPAIR Project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef]
- Formetta, G.; Tootle, G.; Therrell, M. Regional Reconstruction of Po River Basin (Italy) Streamflow. Hydrology 2022, 9, 163. [Google Scholar] [CrossRef]
- UNESCO. Po Delta; UNESCO: Paris, France, 2023. [Google Scholar]
- Suwanu Europe. State of Play Analysis for Po River Basin, Italy. Technical Report. 2018. Available online: https://suwanu-europe.eu/wp-content/uploads/2021/05/State-of-play_Po-River-Basin-Italy.pdf (accessed on 28 February 2024).
- Musolino, D.; Vezzani, C.; Massarutto, A. Drought Management in the Po River Basin, Italy. In Drought; Wiley: Hoboken, NJ, USA, 2018; pp. 201–215. [Google Scholar] [CrossRef]
- Monteleone, B.; Borzí, I.; Arosio, M.; Cesarini, L.; Bonaccorso, B.; Martina, M. Modelling the response of wheat yield to stage-specific water stress in the Po Plain. Agric. Water Manag. 2023, 287, 108444. [Google Scholar] [CrossRef]
- Raimondi, A.; Bettoni, F.; Bianchi, A.; Becciu, G. Economic Sustainability of Small-Scale Hydroelectric Plants on a National Scale—The Italian Case Study. Water 2021, 13, 1170. [Google Scholar] [CrossRef]
- Dipartimento della Protezione Civile-Presidenza del Consiglio dei Ministri. Delibera del Consiglio dei Ministri del 4 Luglio 2022—Dichiarazione dello Stato di Emergenza in Relazione alla Situazione di Deficit Idrico in Atto nei Territori delle Regioni e delle Province Autonome Ricadenti nei Bacini Distrettuali del Po e delle Al; Dipartimento della Protezione Civile-Presidenza del Consiglio dei Ministri: Roma, Italy, 2022.
- Consiglio dei Ministri. Delibera del Consiglio dei Ministri del 28 Dicembre 2022; Consiglio dei Ministri: Roma, Italy, 2022. [Google Scholar]
- Montanari, A.; Nguyen, H.; Rubinetti, S.; Ceola, S.; Galelli, S.; Rubino, A.; Zanchettin, D. Why the 2022 Po River drought is the worst in the past two centuries. Sci. Adv. 2023, 9, eadg8304. [Google Scholar] [CrossRef] [PubMed]
- Bonaldo, D.; Bellafiore, D.; Ferrarin, C.; Ferretti, R.; Ricchi, A.; Sangelantoni, L.; Vitelletti, M.L. The summer 2022 drought: A taste of future climate for the Po valley (Italy)? Reg. Environ. Change 2023, 23, 1. [Google Scholar] [CrossRef]
- Boyko, O.; Reggiani, P.; Todini, E. Post-processing climate projections of precipitation for the Po river basin: Will Italy’s North become water-constrained? Hydrol. Res. 2022, 53, 1414–1427. [Google Scholar] [CrossRef]
- Baronetti, A.; Dubreuil, V.; Provenzale, A.; Fratianni, S. Future droughts in northern Italy: High-resolution projections using EURO-CORDEX and MED-CORDEX ensembles. Clim. Change 2022, 172, 22. [Google Scholar] [CrossRef]
- Autorità Distrettuale di Bacino del Po. Bollettini dell’Osservatorio Permanente Sugli Utilizzi Idrici nel Distretto Idrogafico del Fiume Po; Autorità Distrettuale di Bacino del Po: Parma, Italy, 2023. [Google Scholar]
- Colombo, N.; Guyennon, N.; Valt, M.; Salerno, F.; Godone, D.; Cianfarra, P.; Freppaz, M.; Maugeri, M.; Manara, V.; Acquaotta, F.; et al. Unprecedented snow-drought conditions in the Italian Alps during the early 2020s. Environ. Res. Lett. 2023, 18, 074014. [Google Scholar] [CrossRef]
- Baronetti, A.; González-Hidalgo, J.C.; Vicente-Serrano, S.M.; Acquaotta, F.; Fratianni, S. A weekly spatio-temporal distribution of drought events over the Po Plain (North Italy) in the last five decades. Int. J. Climatol. 2020, 40, 4463–4476. [Google Scholar] [CrossRef]
- Crespi, A.; Borghi, A.; Facchi, A.; Gandolfi, C.; Maugeri, M. Spatio-temporal variability and trends of drought indices over lombardy plain (Northern Italy) from meteorological station records (1951–2017). Ital. J. Agrometeorol. 2020, 2020, 3–18. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Krusic, P.J.; Tegel, W.; van der Schrier, G.; Andreu-Hayles, L.; et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015, 1, e1500561. [Google Scholar] [CrossRef] [PubMed]
- De Michele, C.; Salvadori, G.; Vezzoli, R.; Pecora, S. Multivariate assessment of droughts: Frequency analysis and dynamic return period. Water Resour. Res. 2013, 49, 6985–6994. [Google Scholar] [CrossRef]
- Salvadori, G.; De Michele, C. Multivariate real-time assessment of droughts via copula-based multi-site Hazard Trajectories and Fans. J. Hydrol. 2015, 526, 101–115. [Google Scholar] [CrossRef]
- Zanchettin, D.; Traverso, P.; Tomasino, M. Po River discharges: A preliminary analysis of a 200-year time series. Clim. Change 2008, 89, 411–433. [Google Scholar] [CrossRef]
- Bosak, S.; Ljubesic, Z.; Caput Mihalić, K. Phytoplankton seasonality and composition along the coastal NE Adriatic Sea during the extremely low Po River discharge in 2006. Acta Bot. Croata 2007, 66, 101–115. [Google Scholar]
- Straffelini, E.; Tarolli, P. Climate change-induced aridity is affecting agriculture in Northeast Italy. Agric. Syst. 2023, 208, 103647. [Google Scholar] [CrossRef]
- Baronetti, A.; Menichini, M.; Provenzale, A. Vegetation response to droughts: The case of northern Italy. Int. J. Climatol. 2024, 44, 501–520. [Google Scholar] [CrossRef]
- Sepulcre-Canto, G.; Horion, S.; Singleton, A.; Carrao, H.; Vogt, J. Development of a Combined Drought Indicator to detect agricultural drought in Europe. Nat. Hazards Earth Syst. Sci. 2012, 12, 3519–3531. [Google Scholar] [CrossRef]
- Hao, Z.; AghaKouchak, A. Multivariate Standardized Drought Index: A parametric multi-index model. Adv. Water Resour. 2013, 57, 12–18. [Google Scholar] [CrossRef]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The Drought Monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Barichivich, J.; Osborn, T.J.; Harris, I.; van der Schrier, G.; Jones, P. Monitoring global drought using the self-calibrating Palmer Drought Severity Index. Bull. Am. Meteorol. Soc. 2022, 103, S31–S33. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Quiring, S.M. Development and Evaluation of Soil Moisture-Based Indices for Agricultural Drought Monitoring. Agron. J. 2019, 111, 1392–1406. [Google Scholar] [CrossRef]
- Van der Schrier, G.; Allan, R.P.; Ossó, A.; Sousa, P.M.; Van de Vyver, H.; Van Schaeybroeck, B.; Coscarelli, R.; Pasqua, A.A.; Petrucci, O.; Curley, M.; et al. The 1921 European drought: Impacts, reconstruction and drivers. Clim. Past 2021, 17, 2201–2221. [Google Scholar] [CrossRef]
- Rubinetti, S.; Taricco, C.; Alessio, S.; Rubino, A.; Bizzarri, I.; Zanchettin, D. Robust Decadal Hydroclimate Predictions for Northern Italy Based on a Twofold Statistical Approach. Atmosphere 2020, 11, 671. [Google Scholar] [CrossRef]
- Pérez-Blanco, C.D.; Koks, E.E.; Calliari, E.; Mysiak, J. Economic Impacts of Irrigation-Constrained Agriculture in the Lower Po Basin. Water Econ. Policy 2018, 4, 1750003. [Google Scholar] [CrossRef]
- Musolino, D.; De Carli, A.; Massarutto, A. Evaluation of the socioeconomic impacts of the drought events: The case of the Po river basin. Eur. Countrys. 2017, 9, 163–176. [Google Scholar] [CrossRef]
- Colombani, N.; Mastrocicco, M.; Giambastiani, B.M.S. Predicting Salinization Trends in a Lowland Coastal Aquifer: Comacchio (Italy). Water Resour. Manag. 2015, 29, 603–618. [Google Scholar] [CrossRef]
- Cozzi, S.; Giani, M. River water and nutrient discharges in the Northern Adriatic Sea: Current importance and long term changes. Cont. Shelf Res. 2011, 31, 1881–1893. [Google Scholar] [CrossRef]
- Grilli, F.; Accoroni, S.; Acri, F.; Bernardi Aubry, F.; Bergami, C.; Cabrini, M.; Campanelli, A.; Giani, M.; Guicciardi, S.; Marini, M.; et al. Seasonal and Interannual Trends of Oceanographic Parameters over 40 Years in the Northern Adriatic Sea in Relation to Nutrient Loadings Using the EMODnet Chemistry Data Portal. Water 2020, 12, 2280. [Google Scholar] [CrossRef]
- Dahlmann, H.; Stephan, R.; Stahl, K. Upstream-downstream asymmetries of drought impacts in major river basins of the European Alps. Front. Water 2022, 4, 1061991. [Google Scholar] [CrossRef]
- Quesada-Montano, B.; Di Baldassarre, G.; Rangecroft, S.; Van Loon, A.F. Hydrological change: Towards a consistent approach to assess changes on both floods and droughts. Adv. Water Resour. 2018, 111, 31–35. [Google Scholar] [CrossRef]
- Colombani, N.; Di Giuseppe, D.; Faccini, B.; Mastrocicco, M.; Coltorti, M. Formation and dissolution of salt crusts as a rapid way of nitrate mobilization in a tile-drained agricultural field under a temperate climate. Arab. J. Geosci. 2016, 9, 463. [Google Scholar] [CrossRef]
- Luo, J.; Straffelini, E.; Bozzolan, M.; Zheng, Z.; Tarolli, P. Saltwater intrusion in the Po River Delta (Italy) during drought conditions: Analyzing its spatio-temporal evolution and potential impact on agriculture. Int. Soil Water Conserv. Res. 2023. [Google Scholar] [CrossRef]
- Marchina, C.; Natali, C.; Fazzini, M.; Fusetti, M.; Tassinari, R.; Bianchini, G. Extremely dry and warm conditions in northern Italy during the year 2015: Effects on the Po river water. Rend. Lincei 2017, 28, 281–290. [Google Scholar] [CrossRef]
- Bruno, M.C.; Doretto, A.; Boano, F.; Ridolfi, L.; Fenoglio, S. Role of the Hyporheic Zone in Increasing the Resilience of Mountain Streams Facing Intermittency. Water 2020, 12, 2034. [Google Scholar] [CrossRef]
- Marchina, C.; Natali, C.; Bianchini, G. The Po River Water Isotopes during the Drought Condition of the Year 2017. Water 2019, 11, 150. [Google Scholar] [CrossRef]
- Avanzi, F.; Munerol, F.; Milelli, M.; Gabellani, S.; Massari, C.; Girotto, M.; Cremonese, E.; Galvagno, M.; Bruno, G.; Morra di Cella, U.; et al. Winter snow deficit was a harbinger of summer 2022 socio-hydrologic drought in the Po Basin, Italy. Commun. Earth Environ. 2024, 5, 64. [Google Scholar] [CrossRef]
- Gervasio, M.P.; Soana, E.; Vincenzi, F.; Magri, M.; Castaldelli, G. Drought-Induced Salinity Intrusion Affects Nitrogen Removal in a Deltaic Ecosystem (Po River Delta, Northern Italy). Water 2023, 15, 2405. [Google Scholar] [CrossRef]
- Rotiroti, M.; Sacchi, E.; Caschetto, M.; Zanotti, C.; Fumagalli, L.; Biasibetti, M.; Bonomi, T.; Leoni, B. Groundwater and surface water nitrate pollution in an intensively irrigated system: Sources, dynamics and adaptation to climate change. J. Hydrol. 2023, 623, 129868. [Google Scholar] [CrossRef]
- Severini, E.; Magri, M.; Soana, E.; Bartoli, M.; Faggioli, M.; Celico, F. Irrigation practices affect relationship between reduced nitrogen fertilizer use and improvement of river and groundwater chemistry. Agric. Water Manag. 2023, 289, 108564. [Google Scholar] [CrossRef]
- Han, Y.; Deng, F.; Gong, J.; Li, Z.; Liu, Z.; Zhang, J.; Liu, W. Water distribution based on SAR and optical data to improve hazard mapping. Environ. Res. 2023, 235, 116694. [Google Scholar] [CrossRef] [PubMed]
- Fenoglio, S.; Bo, T.; Cucco, M.; Malacarne, G. Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy). Ital. J. Zool. 2007, 74, 191–201. [Google Scholar] [CrossRef]
- Aubry, F.B.; Cossarini, G.; Acri, F.; Bastianini, M.; Bianchi, F.; Camatti, E.; De Lazzari, A.; Pugnetti, A.; Solidoro, C.; Socal, G. Plankton communities in the northern Adriatic Sea: Patterns and changes over the last 30 years. Estuar. Coast. Shelf Sci. 2012, 115, 125–137. [Google Scholar] [CrossRef]
- Fenoglio, S.; Bo, T.; Bosi, G. Deep Interstitial Habitat as a Refuge for Agabus paludosus (Fabricius) (Coleoptera: Dytiscidae) during Summer Droughts. Coleopt. Bull. 2006, 60, 37–41. [Google Scholar] [CrossRef]
- Piedelobo, L.; Taramelli, A.; Schiavon, E.; Valentini, E.; Molina, J.L.; Nguyen Xuan, A.; González-Aguilera, D. Assessment of Green Infrastructure in Riparian Zones Using Copernicus Programme. Remote Sens. 2019, 11, 2967. [Google Scholar] [CrossRef]
- Marchina, C.; Bianchini, G.; Natali, C.; Pennisi, M.; Colombani, N.; Tassinari, R.; Knoeller, K. The Po river water from the Alps to the Adriatic Sea (Italy): New insights from geochemical and isotopic (δ18O-δD) data. Environ. Sci. Pollut. Res. 2015, 22, 5184–5203. [Google Scholar] [CrossRef]
- Monteleone, B.; Borzí, I.; Bonaccorso, B.; Martina, M. Developing stage-specific drought vulnerability curves for maize: The case study of the Po River basin. Agric. Water Manag. 2022, 269, 107713. [Google Scholar] [CrossRef]
- Monti, A.; Zatta, A. Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric. Ecosyst. Environ. 2009, 132, 252–259. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Colombani, N.; Gargini, A. Modelling present and future Po river interactions with alluvial aquifers (Low Po River Plain, Italy). J. Water Clim. Change 2014, 5, 457–471. [Google Scholar] [CrossRef]
- Wilhite, D.A. National Drought Management Policy Guidelines: A Template for Action; Number 1164; CRC Press: Boca Raton, FL, USA, 2017; pp. 55–94. [Google Scholar] [CrossRef]
- Yusa, A.; Berry, P.; Cheng, J.; Ogden, N.; Bonsal, B.; Stewart, R.; Waldick, R. Climate Change, Drought and Human Health in Canada. Int. J. Environ. Res. Public Health 2015, 12, 8359–8412. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.D.; Ebisu, K.; Peng, R.D.; Dominici, F.; Bell, M.L. Drought and the risk of hospital admissions and mortality in older adults in western USA from 2000 to 2013: A retrospective study. Lancet Planet. Health 2017, 1, e17–e25. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, E.; Carnevale, C.; Tolari, V.; Turrini, E.; Volta, M. Assessing the Impact of the Po Valley Air Quality Plan (Italy); Springer: Berlin/Heidelberg, Germany, 2021; pp. 187–193. [Google Scholar] [CrossRef]
- Fennell, K.M.; Jarrett, C.E.; Kettler, L.J.; Dollman, J.; Turnbull, D.A. “Watching the bank balance build up then blow away and the rain clouds do the same”: A thematic analysis of South Australian farmers’ sources of stress during drought. J. Rural Stud. 2016, 46, 102–110. [Google Scholar] [CrossRef]
- Epstein, P.; Defilippo, C. West Nile Virus and Drought. Glob. Change Hum. Health 2001, 2, 105–107. [Google Scholar] [CrossRef]
- Regione Lombardia. Bollettino Sorveglianza West Nile e Altre Arbovirosi 2023. 2023. Available online: https://www.regione.lombardia.it/wps/wcm/connect/fcbf6e03-b63b-42ad-ade9-34d8228bd30b/Bollettino+West+Nile+2023-49.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-fcbf6e03-b63b-42ad-ade9-34d8228bd30b-oMW7FN0 (accessed on 10 February 2024).
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar] [CrossRef] [PubMed]
- Virtuani, P. Il Po è in Secca, le Centrali Elettriche Rischiano lo Stop: Manca L’acqua per Raffreddare gli Impianti; Corriere della Sera: Milan, Italy, 2022. [Google Scholar]
- Cuartas, L.A.; Cunha, A.P.M.D.A.; Alves, J.A.; Parra, L.M.P.; Deusdará-Leal, K.; Costa, L.C.O.; Molina, R.D.; Amore, D.; Broedel, E.; Seluchi, M.E.; et al. Recent Hydrological Droughts in Brazil and Their Impact on Hydropower Generation. Water 2022, 14, 601. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, G.; Li, Y.; Lu, C. Responses of hydroelectricity generation to streamflow drought under climate change. Renew. Sustain. Energy Rev. 2023, 174, 113141. [Google Scholar] [CrossRef]
- Gaita, L. L’impatto della Crisi Climatica sul Turismo in Italia: Addio Stagione Sciistica, Città D’arte mai D’estate, Nord Europa o Montagna Preferite al Mare—La Proiezione; Il Fatto Quotidiano: Roma, Italy, 2023. [Google Scholar]
- Martínez-Ibarra, E. Climate, water and tourism: Causes and effects of droughts associated with urban development and tourism in Benidorm (Spain). Int. J. Biometeorol. 2015, 59, 487–501. [Google Scholar] [CrossRef] [PubMed]
- Dube, K.; Nhamo, G.; Chikodzi, D. Climate change-induced droughts and tourism: Impacts and responses of Western Cape province, South Africa. J. Outdoor Recreat. Tour. 2022, 39, 100319. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Galletti, A.; Zambello, E.; Zanni, G.; Masotti, L. A project of reuse of reclaimed wastewater in the Po Valley, Italy: Polishing sequence and cost benefit analysis. J. Hydrol. 2012, 432–433, 127–136. [Google Scholar] [CrossRef]
- Jensen, C.R.; Battilani, A.; Plauborg, F.; Psarras, G.; Chartzoulakis, K.; Janowiak, F.; Stikic, R.; Jovanovic, Z.; Li, G.; Qi, X.; et al. Deficit irrigation based on drought tolerance and root signalling in potatoes and tomatoes. Agric. Water Manag. 2010, 98, 403–413. [Google Scholar] [CrossRef]
- Ceppi, A.; Ravazzani, G.; Corbari, C.; Salerno, R.; Meucci, S.; Mancini, M. Real-time drought forecasting system for irrigation management. Hydrol. Earth Syst. Sci. 2014, 18, 3353–3366. [Google Scholar] [CrossRef]
- Loch, A.; Santato, S.; Pérez-Blanco, C.D.; Mysiak, J. Measuring the transaction costs of historical shifts to informal drought management institutions in Italy. Water 2020, 12, 1866. [Google Scholar] [CrossRef]
- Frigerio, J.; Capotorti, G.; Del Vico, E.; Ouled Larbi, M.; Grassi, F.; Blasi, C.; Labra, M.; Guidi Nissim, W. Tree tracking: Species selection and traceability for sustainable and biodiversity-friendly urban reforestation. PLant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2023, 157, 920–934. [Google Scholar] [CrossRef]
- Autorità Distrettuale di Bacino del Po. Piano Stralcio del Bilancio Idrico del Distretto Idrografico Padano; Technical Report; Autorità Distrettuale di Bacino del Po: Parma, Italy, 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteleone, B.; Borzí, I. Drought in the Po Valley: Identification, Impacts and Strategies to Manage the Events. Water 2024, 16, 1187. https://doi.org/10.3390/w16081187
Monteleone B, Borzí I. Drought in the Po Valley: Identification, Impacts and Strategies to Manage the Events. Water. 2024; 16(8):1187. https://doi.org/10.3390/w16081187
Chicago/Turabian StyleMonteleone, Beatrice, and Iolanda Borzí. 2024. "Drought in the Po Valley: Identification, Impacts and Strategies to Manage the Events" Water 16, no. 8: 1187. https://doi.org/10.3390/w16081187
APA StyleMonteleone, B., & Borzí, I. (2024). Drought in the Po Valley: Identification, Impacts and Strategies to Manage the Events. Water, 16(8), 1187. https://doi.org/10.3390/w16081187