p-Phenylenediamine Derivatives in Tap Water: Implications for Human Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Tap Water Sample Collection
2.3. Sample Extraction
2.4. Instrumental Analysis
2.5. Daily Intake Estimation
2.6. QA/QC
2.7. Statistical Analysis
3. Results and Discussion
3.1. PPDs in Tap Water from Hangzhou
3.2. PPDs in Tap Water from Taizhou
3.3. Human Daily Intake Estimation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dorofeev, A.; Zemskii, D. Oxypropylated aromatic diamines-stabilisers for tyre rubbers. Int. Polym. Sci. Technol. 2017, 44, 27–30. [Google Scholar] [CrossRef]
- Poldushova, G.; Kandyrin, K.; Reznichenko, S. The effect of the structure of p-phenylenediamine antiagers on the physicomechanical and hysteresis properties of filled rubber compounds. Int. Polym. Sci. Technol. 2016, 43, 19–22. [Google Scholar] [CrossRef]
- Xu, J.; Hao, Y.; Yang, Z.; Li, W.; Xie, W.; Huang, Y.; Wang, D.; He, Y.; Liang, Y.; Matsiko, J.J. Rubber antioxidants and their transformation products: Environmental occurrence and potential impact. Int. J. Environ. Res. 2022, 19, 14595. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Wang, D. Tire-rubber related pollutant 6-PPD quinone: A review of its transformation, environmental distribution, bioavailability, and toxicity. J. Hazard. Mater. 2023, 459, 132265. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Koenig, J. A review of rubber oxidation. Rubber Chem. Technol. 2005, 78, 355–390. [Google Scholar] [CrossRef]
- Lv, Y. Analysis of technology progress and market demand of para-phenylenediamine rubber antioxidants. China Rubber Sci. Technol. 2010, 1, 223–225. [Google Scholar]
- US EPA ChemView. 2022. Available online: https://chemview.epa.gov/chemview/ (accessed on 11 June 2022).
- Jin, R.; Venier, M.; Chen, Q.; Yang, J.; Liu, M.; Wu, Y. Amino antioxidants: A review of their environmental behavior, human exposure, and aquatic toxicity. Chemosphere 2023, 317, 137913. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Zhang, J.; Wang, W.; Wu, P.; Ru, Y.; Cai, Z. Mass spectrometry analysis of a ubiquitous tire rubber-derived quinone in the environment. TrAC Trends Anal. Chem. 2022, 157, 116756. [Google Scholar] [CrossRef]
- Chen, X.; He, T.; Yang, X.; Gan, Y.; Qing, X.; Wang, J.; Huang, Y. Analysis, environmental occurrence, fate and potential toxicity of tire wear compounds 6PPD and 6PPD-quinone. J. Hazard. Mater. 2023, 452, 131245. [Google Scholar] [CrossRef]
- Cao, G.; Wang, W.; Zhang, J.; Wu, P.; Zhao, X.; Yang, Z.; Hu, D.; Cai, Z. New Evidence of Rubber-Derived Quinones in Water, Air, and Soil. Environ. Sci. Technol. 2022, 56, 4142–4150. [Google Scholar] [CrossRef]
- Wang, W.; Cao, G.; Zhang, J.; Chen, Z.; Dong, C.; Chen, J.; Cai, Z. p-Phenylenediamine-Derived Quinones as New Contributors to the Oxidative Potential of Fine Particulate Matter. Environ. Sci. Technol. Lett. 2022, 9, 712–717. [Google Scholar] [CrossRef]
- Zeng, L.; Li, Y.; Sun, Y.; Liu, L.Y.; Shen, M.; Du, B. Widespread Occurrence and Transport of p-Phenylenediamines and Their Quinones in Sediments across Urban Rivers, Estuaries, Coasts, and Deep-Sea Regions. Environ. Sci. Technol. 2023, 57, 2393–2403. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, S.; Liu, X.; Tian, L.; Mo, Y.; Yi, X.; Liu, S.; Liu, J.; Li, J.; Zhang, G. Aquatic environmental fates and risks of benzotriazoles, benzothiazoles, and p-phenylenediamines in a catchment providing water to a megacity of China. Environ. Res. 2023, 216 Pt 4, 114721. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Guo, R.; Jiang, S.; Wu, P.; Jin, H. Occurrence of p-phenylenediamine antioxidants (PPDs) and PPDs-derived quinones in indoor dust. Sci. Total Environ. 2024, 169325. [Google Scholar] [CrossRef]
- Guo, Z.; Cheng, Z.; Zhang, S.; Zhu, H.; Zhao, L.; Baqar, M.; Wang, L.; Sun, H. Unexpected Exposure Risks to Emerging Aromatic Amine Antioxidants and p-Phenylenediamine Quinones to Residents: Evidence from External and Internal Exposure as Well as Hepatotoxicity Evaluation. Environ. Health 2024. [Google Scholar] [CrossRef]
- Matsumoto, M.; Yamaguchi, M.; Yoshida, Y.; Senuma, M.; Takashima, H.; Kawamura, T.; Kato, H.; Takahashi, M.; Hirata-Koizumi, M.; Ono, A. An antioxidant, N, N′-diphenyl-p-phenylenediamine (DPPD), affects labor and delivery in rats: A 28-day repeated dose test and reproduction/developmental toxicity test. Food Chem. Toxicol. 2013, 56, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Fang, C.; Di, S.; Yu, Y.; Wang, C.; Wang, X.; Jin, Y. Oral exposure to tire rubber-derived contaminant 6PPD and 6PPD-quinone induce hepatotoxicity in mice. Sci. Total Environ. 2023, 869, 161836. [Google Scholar] [CrossRef]
- Bohara, K.; Timilsina, A.; Adhikari, K.; Kafle, A.; Basyal, S.; Joshi, P.; Yadav, A.K. A mini review on 6PPD quinone: A new threat to aquaculture and fisheries. Environ. Pollut. 2024, 340 Pt 2, 122828. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Zhao, H.; Peter, K.T.; Gonzalez, M.; Wetzel, J.; Wu, C.; Hu, X.; Prat, J.; Mudrock, E.; Hettinger, R. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 2021, 371, 185–189. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Liu, J.; Bridget, R. Food-energy-water nexus for multi-scale sustainable development. Resour. Conserv. Recycl. 2020, 154, 104565. [Google Scholar]
- Babuji, P.; Thirumalaisamy, S.; Duraisamy, K.; Periyasamy, G. Human health risks due to exposure to water pollution: A review. Water 2023, 15, 2532. [Google Scholar] [CrossRef]
- Liu, M.; Graham, N.; Wang, W.; Zhao, R.; Lu, Y.; Elimelech, M.; Yu, W. Spatial assessment of tap-water safety in China. Nat. Sustain. 2022, 5, 689–698. [Google Scholar] [CrossRef]
- Evans, S.; Campbell, C.; Naidenko, O.V. Cumulative risk analysis of carcinogenic contaminants in United States drinking water. Heliyon 2019, 5, e02314. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Duttagupta, S.; Mukherjee, A. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. J. Environ. Chem. Eng. 2022, 10, 107560. [Google Scholar] [CrossRef]
- Dahiya, V. Heavy metal toxicity of drinking water: A silent killer. GSC Biol. Pharm. Sci. 2022, 19, 020–025. [Google Scholar] [CrossRef]
- Farkhondeh, T.; Naseri, K.; Esform, A.; Aramjoo, H.; Naghizadeh, A. Drinking water heavy metal toxicity and chronic kidney diseases: A systematic review. Rev. Environ. Health 2021, 36, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Verma, A.K. Arsenic: It’s toxicity and impact on human health. Int. J. Biol. Innov. 2021, 3, 38–47. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, W.; Kannan, K.; Moon, H.B. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea. Water Res. 2016, 103, 182–188. [Google Scholar] [CrossRef]
- Madhav, S.; Ahamad, A.; Singh, A.K.; Kushawaha, J.; Chauhan, J.S.; Sharma, S.; Singh, P. Water pollutants: Sources and impact on the environment and human health. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020; pp. 43–62. [Google Scholar]
- Zhang, H.; Zhang, Y.; Li, J.; Yang, M. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China. Sci. Total Environ. 2019, 655, 607–613. [Google Scholar] [CrossRef]
- Al-Nasir, F.; Hijazin, T.J.; Al-Alawi, M.M.; Jiries, A.; Mayyas, A.; Al-Dalain, S.A.; Al-Dmour, R.; Alahmad, A.; Al-Madanat, O.Y.; Batarseh, M.I. Accumulation, Source Identification, and Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Jordanian Vegetables. Toxics 2022, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Jiries, A.; Al-Nasir, F.; Hijazin, T.J.; Al-Alawi, M.; El Fels, L.; Mayyas, A.; Al-Dmour, R.; Al-Madanat, O.Y. Polycyclic aromatic hydrocarbons in citrus fruit irrigated with fresh water under arid conditions: Concentrations, sources, and risk assessment. Arab. J. Chem. 2022, 15, 104027. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, Y.; Liu, Y.; Chang, H.; Li, Z.; Xue, J. Uptake and translocation of organic pollutants in plants: A review. J. Integr. Agric. 2017, 16, 1659–1668. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Huang, Z.; Liu, Y.H.; Hu, L.X.; He, L.Y.; Liu, Y.S.; Zhao, J.L.; Ying, G.G. Occurrence and risks of 23 tire additives and their transformation products in an urban water system. Environ. Int. 2023, 171, 107715. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Wang, W.; Zhang, J.; Wu, P.; Qiao, H.; Li, H.; Huang, G.; Yang, Z.; Cai, Z. Occurrence and Fate of Substituted p-Phenylenediamine-Derived Quinones in Hong Kong Wastewater Treatment Plants. Environ. Sci. Technol. 2023, 57, 15635–15643. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Dong, X.; Zhao, N.; Zhao, M.; Jin, H. Polyhalogenated carbazoles in indoor dust from Hangzhou, China. Sci. Total Environ. 2023, 859 Pt 1, 159971. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, Y.; Li, T.; Chen, W.; Wang, W. Gap to End-TB targets in eastern China: A joinpoint analysis from population-based notification data in Zhejiang Province, China, 2005–2018. Int. J. Infect. Dis. 2021, 104, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Kryuchkov, F.; Foldvik, A.; Sandodden, R.; Uhlig, S. Presence of 6PPD-quinone in runoff water samples from Norway using a new LC-MS/MS method. Front. Environ. Chem. 2023, 4, 1194664. [Google Scholar] [CrossRef]
- Seiwert, B.; Nihemaiti, M.; Troussier, M.; Weyrauch, S.; Reemtsma, T. Abiotic oxidative transformation of 6-PPD and 6-PPD quinone from tires and occurrence of their products in snow from urban roads and in municipal wastewater. Water Res. 2022, 212, 118122. [Google Scholar] [CrossRef]
- Zuccarello, P.; Ferrante, M.; Cristaldi, A.; Copat, C.; Grasso, A.; Sangregorio, D.; Fiore, M.; Oliveri Conti, G. Exposure to microplastics (<10 mum) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res. 2019, 157, 365–371. [Google Scholar]
- Kahn, H.D.; Stralka, K. Estimated daily average per capita water ingestion by child and adult age categories based on USDA’s 1994–1996 and 1998 continuing survey of food intakes by individuals. J. Expo. Sci. Environ. Epidemiol. 2009, 19, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Wang, Y.; Xia, W.; He, Z.; Xu, S. Neonicotinoids in raw, finished, and tap water from Wuhan, Central China: Assessment of human exposure potential. Sci. Total Environ. 2019, 675, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yang, S.; Wang, P.G. Matrix effects and application of matrix effect factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Mao, W.; Jin, H.; Guo, R.; Chen, P.; Zhong, S.; Wu, X. Occurrence of p-phenylenediamine antioxidants in human urine. Sci. Total Environ. 2024, 914, 170045. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Li, J.; Du, B.; Pan, Z.; Liu, L.Y.; Zeng, L. E-Waste recycling emits large quantities of emerging aromatic amines and organophosphites: A poorly recognized source for another two classes of synthetic antioxidants. Environ. Sci. Technol. Lett. 2022, 9, 625–631. [Google Scholar] [CrossRef]
- PubChem. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N-_1_3-Dimethylbutyl_-N_-phenyl-p-phenylenediamine#section=Solubility (accessed on 23 January 2022).
- Deng, C.; Huang, J.; Qi, Y.; Chen, D.; Huang, W. Distribution patterns of rubber tire-related chemicals with particle size in road and indoor parking lot dust. Sci. Total Environ. 2022, 844, 157144. [Google Scholar] [CrossRef]
- Hu, X.; Zhao, H.N.; Tian, Z.; Peter, K.T.; Dodd, M.C.; Kolodziej, E.P. Transformation product formation upon heterogeneous ozonation of the tire rubber antioxidant 6PPD (N-(1, 3-dimethylbutyl)-N′-phenyl-p-phenylenediamine). Environ. Sci. Technol. Lett. 2022, 9, 413–419. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Yin, S.; Wang, Q.; Li, Y.; Liu, Q.; Liu, L.; Luo, X.; Chen, L.; Zheng, H. First insights into 6PPD-quinone formation from 6PPD photodegradation in water environment. J. Hazard. Mater. 2023, 459, 132127. [Google Scholar] [CrossRef]
- Wang, C.Y.; Zhou, B.; Huang, B. A continuing 30-year decline in water quality of Jiaojiang Estuary, China. Water Sci. Eng. 2015, 8, 20–29. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Wu, J.; Su, F. Surface water quality and health risk assessment in Taizhou City, Zhejiang Province (China). Expo. Health 2022, 14, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Zhang, L.; Huang, Z.; Liu, Y.; Wu, N.; He, J.; Zhang, Z.; Zhang, Y.; Niu, Z. Perfluoroalkyl acids in drinking water of China in 2017: Distribution characteristics, influencing factors and potential risks. Environ. Int. 2019, 123, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, N.; Zhang, B.; Jin, L.; Li, M.; Hu, M.; Zhang, X.; Wei, S.; Yu, H. Occurrence of organophosphate flame retardants in drinking water from China. Water Res. 2014, 54, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Cao, G.; Zhang, J.; Wu, P.; Chen, Y.; Chen, Z.; Qi, Z.; Li, R.; Dong, C.; Cai, Z. Beyond substituted p-Phenylenediamine antioxidants: Prevalence of their quinone derivatives in PM2.5. Environ. Sci. Technol. 2022, 56, 10629–10637. [Google Scholar] [CrossRef] [PubMed]
- Schneider, K.; Bierwisch, A.; Kaiser, E. ERASSTRI-European risk assessment study on synthetic turf rubber infill-Part 3: Exposure and risk characterisation. Sci. Total Environ. 2020, 718, 137721. [Google Scholar] [CrossRef]
- Rauert, C.; Vardy, S.; Daniell, B.; Charlton, N.; Thomas, K.V. Tyre additive chemicals, tyre road wear particles and high production polymers in surface water at 5 urban centres in Queensland, Australia. Sci. Total Environ. 2022, 852, 158468. [Google Scholar] [CrossRef]
DF | Mean | Median | Percentile | ||||
---|---|---|---|---|---|---|---|
Min | 25th | 75th | Max | ||||
Hangzhou (n = 131) | |||||||
6PPD | 87% | 0.79 | 0.64 | <LOD | 0.22 | 1.2 | 5.7 |
IPPD | 73% | 0.31 | 0.27 | <LOD | <LOD | 0.37 | 1.4 |
44PD | 72% | 0.39 | 0.36 | <LOD | <LOD | 1.0 | 2.2 |
CPPD | 51% | 0.16 | 0.095 | <LOD | <LOD | 0.41 | 1.7 |
7PPD | 36% | NC a | <LOD | <LOD | <LOD | 0.074 | 0.27 |
77PD | 19% | NC | <LOD | <LOD | <LOD | <LOD | 0.28 |
DTPD | 15% | NC | <LOD | <LOD | <LOD | <LOD | 0.44 |
DNPD | 0% | NC | <LOD | <LOD | <LOD | <LOD | <LOD |
DPPD | 0% | NC | <LOD | <LOD | <LOD | <LOD | <LOD |
Taizhou (n = 30) | |||||||
6PPD | 83% | 0.93 | 0.74 | <LOD | 0.35 | 1.4 | 2.6 |
CPPD | 83% | 1.0 | 1.2 | <LOD | 0.81 | 1.6 | 4.2 |
44PD | 70% | 0.78 | 0.79 | <LOD | <LOD | 1.1 | 1.8 |
7PPD | 63% | 0.36 | 0.25 | <LOD | <LOD | 0.49 | 0.85 |
IPPD | 37% | NC | <LOD | <LOD | <LOD | <LOD | 0.44 |
77PD | 0% | NC | <LOD | <LOD | <LOD | <LOD | <LOD |
DTPD | 0% | NC | <LOD | <LOD | <LOD | <LOD | <LOD |
DNPD | 0% | NC | <LOD | <LOD | <LOD | <LOD | <LOD |
DPPD | 0% | NC | <LOD | <LOD | <LOD | <LOD | <LOD |
Adults | Children | |||||
---|---|---|---|---|---|---|
Mean | Median | Range | Mean | Median | Range | |
Hangzhou | ||||||
6PPD | 24 | 20 | <1.7−175 | 32 | 26 | <2.2−228 |
CPPD | 4.9 | 2.9 | <0.58−52 | 6.4 | 3.8 | <0.8−68 |
44PD | 12 | 11 | <1.0−68 | 16 | 14 | <1.2−88 |
IPPD | 10 | 8.3 | <0.83−43 | 12 | 11 | <1.1−56 |
Taizhou | ||||||
6PPD | 29 | 23 | <1.7−80 | 37 | 30 | <2.2−104 |
CPPD | 31 | 37 | <0.58−129 | 40 | 48 | <0.8−168 |
44PD | 24 | 24 | <1.0−55 | 31 | 32 | <1.2−72 |
7PPD | 11 | 7.7 | <1.6−26 | 14 | 10 | <2.1−34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Guo, R.; Ren, F.; Jiang, S.; Jin, H. p-Phenylenediamine Derivatives in Tap Water: Implications for Human Exposure. Water 2024, 16, 1128. https://doi.org/10.3390/w16081128
Zhu J, Guo R, Ren F, Jiang S, Jin H. p-Phenylenediamine Derivatives in Tap Water: Implications for Human Exposure. Water. 2024; 16(8):1128. https://doi.org/10.3390/w16081128
Chicago/Turabian StyleZhu, Jianqiang, Ruyue Guo, Fangfang Ren, Shengtao Jiang, and Hangbiao Jin. 2024. "p-Phenylenediamine Derivatives in Tap Water: Implications for Human Exposure" Water 16, no. 8: 1128. https://doi.org/10.3390/w16081128
APA StyleZhu, J., Guo, R., Ren, F., Jiang, S., & Jin, H. (2024). p-Phenylenediamine Derivatives in Tap Water: Implications for Human Exposure. Water, 16(8), 1128. https://doi.org/10.3390/w16081128