Determination of the Effects of Different Irrigation Levels and Vermicompost Doses on Water Consumption and Yield of Greenhouse-Grown Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Treatments
2.3. Crop Water Requirement and Water Use Efficiency
2.4. Crop Management
2.5. Measurements and Analyses of the Plants and Fruit
2.5.1. Soil, Vermicompost, and Water Analyses
2.5.2. Morphological Measurements
2.5.3. Measurement and Analysis of Quality Parameters
2.6. Weather Data Measurements
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morphological Properties of Tomatoes
3.2. Quality Parameters of the Tomatoes
3.3. Water Consumption and Yield Relationships
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- İnce Kaya, Ç.; Yazar, A. Saltmed model performance for quinoa irrigated with fresh and saline water in a mediterranean environment. Irrig. Drain. 2016, 65, 29–37. [Google Scholar] [CrossRef]
- Shammout, M.W.; Qtaishat, T.; Rawabdeh, H.; Shatanawi, M. Improving water use efficiency under deficit irrigation in the Jordan Valley. Sustainability 2018, 10, 4317. [Google Scholar] [CrossRef]
- Uçak, A.B.; Atılgan, A.; Korytowski, M.; Kocięcka, J.; Liberacki, D.; Stachowski, P.; Saltuk, B.; Rolbiecki, R. Derinkuyu dry bean irrigation planning in semi-arid climate by utilising crop water stress index values. J. Water Land Dev. 2023, 59, 1–8. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Yücel, A.; Kocięcka, J.; Atilgan, A.; Marković, M.; Liberacki, D. Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey). Sustainability 2022, 14, 3697. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.A.J.; Flexas, J.; Medrano, H. Prospects for crop production under drought: Research priorities and future directions. Ann. Appl. Biol. 2005, 147, 211–226. [Google Scholar] [CrossRef]
- Topcu, S.; Kirda, C.; Dasgan, Y.; Kaman, H.; Cetin, M.; Yazici, A.; Bacon, M.A. Yield response and N-fertiliser recovery of tomato grown under deficit irrigation. Eur. J. Agron. 2007, 26, 64–70. [Google Scholar] [CrossRef]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Costa, J.M.; Ortuno, M.F.; Chaves, M.M. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. J. Integr. Plant Biol. 2007, 49, 1421–1434. [Google Scholar] [CrossRef]
- Kiymaz, S.; Basak, H.; Ertek, A. Growth, yield and water use efficiency responses of greenhouse-grown bell pepper (Capsicum Annum L.) cultivars to different irrigation and nitrogen applications. Fresenius Environ. Bull. 2020, 29, 5568–5674. [Google Scholar]
- Katsoulas, N.; Kittas, C. Impact of greenhouse microclimate on plant growth and development with special reference to the Solanaceae. Eur. J. Plant Sci. Biotechnol. 2008, 2, 31–44. [Google Scholar]
- Ivushkin, K.; Bartholomeus, H.; Bregt, A.K.; Pulatov, A.; Kempen, B.; de Sousa, L. Global mapping of soil salinity change. Remote Sens. Environ. 2019, 231, 111260. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, H.M.; Du, H.; Bao, Z.L.; Shi, Q.H. Sugar metabolic and N-glycosylated profiles unveil the regulatory mechanism of tomato quality under salt stress. Environ. Exp. Bot. 2020, 177, 104145. [Google Scholar] [CrossRef]
- Zhao, S.S.; Zhang, Q.K.; Liu, M.Y.; Zhou, H.P.; Ma, C.L.; Wang, P.P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Qasim, M.; Ju, J.; Zhao, H.; Bhatti, S.M.; Saleem, G.; Memon, S.P.; Ali, S.; Younas, M.U.; Rajput, N.; Jamali, Z.H. Morphological and Physiological Response of Tomato to Sole and Combined Application of Vermicompost and Chemical Fertilizers. Agronomy 2023, 13, 1508. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Z.; Wang, D.; Sun, Y. Analysis of antagomistic microorganism in vermicompost. Chin. J. Appl. Environ. Biol. 2004, 10, 99–103, (In Chinese with English Abstract). [Google Scholar]
- Wu, D.; Chen, C.; Liu, Y.; Zhang, G.; Yang, L. Vermicompost improves tomato yield and quality by promoting carbohydrate transport to fruit under salt stress. Horticulturae 2023, 9, 1015. [Google Scholar] [CrossRef]
- Alam, M.N.; Jahan, M.S.; Ali, M.K.; Ashraf, M.A.; Islam, M.K. Effect of vermicompost and chemical fertilizers on growth, yield and yield components of potato in barind soils of Bangladesh. J. Appl. Sci. Res. 2007, 12, 1879–1888. [Google Scholar]
- Ali, M.; Griffiths, A.J.; Williams, K.P.; Jones, D.L. Evaluating the Growth Characteristics of Lettuce in Vermicompost and Greenwaste Compost. Eur. J. Soil Biol. 2007, 43, 316–319. [Google Scholar] [CrossRef]
- Orozco, F.H.; Cegarry, J.; Trrujillo, L.M.; Roig, A. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: Effects on C and N contents and the availability of nutrients. Biol. Fertil. Soils 1996, 22, 162–166. [Google Scholar] [CrossRef]
- Bossuyt, H.; Six, J.; Hendrix, P.F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 2005, 37, 251–258. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Şenyiğit, U.; Toprak, M.; Çoşkan, A. Farklı sulama suyu düzeyleri ve vermikompost dozlarının cam sera koşullarında yetiştirilen fesleğen (Ocimum basilicum L.) bitkisinin su tüketimi ve verimine etkileri. Türk Bilim Ve Mühendislik Derg. 2021, 3, 37–43. [Google Scholar]
- Coşkan, A.; Şenyiğit, U. Farklı sulama suyu düzeyi ve vermikompost dozlarının marul bitkisinin mikro element alımına etkileri. Ziraat Fakültesi Derg. 2018, 348–356. [Google Scholar]
- Demir, Z. Effects of vermicompost on soil physicochemical properties and lettuce (Lactuca sativa Var. Crispa) yield in greenhouse under different soil water regimes. Commun. Soil Sci. Plant Anal. 2019, 50, 2151–2168. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, F.; Chang, Q.; Li, T.; Li, F. Effects of vermicomposts on tomato yield and quality and soil fertility in greenhouse under different soil water regimes. Agric. Water Manag. 2015, 160, 98–105. [Google Scholar] [CrossRef]
- Meteoroloji Genel Müdürlüğü. Climate Kırşehir (Turkey). Available online: https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?m=KIRSEHIR (accessed on 15 October 2023).
- USSL. Diagnoses and Improvement of Saline and Alkali Soils; Richards, L.A., Ed.; United State Salinity Laboratory Staff, USDA_SCS, Agriculture Handbook No. 60; USSL: Washington, DC, USA, 1954; 160p. [Google Scholar]
- Kurunc, A.; Unlukara, A.; Cemek, B. Salinity and drought affect yield response of bell pepper similarly. Acta Agric. Scand. Sect. B Soil Plant Sci. 2011, 61, 514–522. [Google Scholar] [CrossRef]
- Ünlükara, A.; Kurunc, A.; Cemek, B. Green Long Pepper Growth under Different Saline and Water Regime Conditions and Usability of Water Consumption in Plant Salt Tolerance. J. Agric. Sci. 2015, 21, 167–176. [Google Scholar] [CrossRef]
- Colimba-Limaico, J.E.; Zubelzu-Minguez, S.; Rodríguez-Sinobas, L. Optimal irrigation scheduling for greenhouse tomato crop (Solanum lycopersicum L.) in Ecuador. Agronomy 2022, 12, 1020. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A.H. Yield Response to Water; Irrigation and Drainage Paper 1986, No. 33; FAO: Rome, Italy, 1979; 193p. [Google Scholar]
- Bouyoucus, G.Y. A Calibaration of the hydrometer for making mechanical analysis of soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis; Klute, A., Ed.; Part 1—Physical and Mineralogical Methods Second Edition; American Society of Agronomy: Madison, WI, USA, 1986. [Google Scholar]
- Rhoades, J.; Chandavi, D.; Lesch, S.F. Soil Salinity Assessment Methods and Interpretation of Electrical Conductivity Measurement; FAO Irrigation and Drainage Paper 57; FAO: Rome, Italy, 1999. [Google Scholar]
- USDA. Soil Survey Staff; Soil Survey Manuel; USDA Handbook. No: 18; USDA: Washington DC, USA, 1993. [Google Scholar]
- Olsen, S.R.; Cole, V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Department of Agriculture: Washington DC, USA, 1954. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Private Limited: New Delhi, India, 1958. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Başbakanlık Köy Hizmetleri Genel Müdürlüğü Yayın Evi: Madison, WI, USA, 1982. [Google Scholar]
- Eltan, E. İçme ve Sulama Suyu Analiz Yöntemleri. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Yayın Evi, Ankara, 109 sy. 1998. Available online: https://kutuphane.tarimorman.gov.tr/vufind/Record/15528 (accessed on 10 February 2024).
- McGuire, G.R. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Tüzel, Y.; Duyar, H.; Öztekin, G.B.; Gül, A. Domates Anaçlarının Farklı Dikim Tarihlerinde Bitki Gelişimi, Sıcaklık Toplamı İsteği, Verim ve Kaliteye Etkileri. Ege Üniv. Ziraat Fak. Derg. 2009, 46, 79–92. [Google Scholar]
- Boyacı, S.; Akyüz, A. Effect of greenhouse cooling methods on the growth and yield of tomato in a Mediterranean climate. Int. J. Hortic. Agric. Food Sci. 2018, 2, 199–207. [Google Scholar] [CrossRef]
- Gutiérrez-Miceli, F.A.; Santiago-Borraz, J.; Molina, J.A.M.; Nafate, C.C.; Abud-Archila, M.; Llaven, M.A.O.; Rinco´n-Rosales, R.; Dendooven, L. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour. Technol. 2007, 98, 2781–2786. [Google Scholar] [CrossRef]
- Siingh, B.K.; Pathak, K.A.; Ramakrıshna, Y.; Verma, V.K.; Deka, B.C. Vermicompost, mulching and irrigation level on growth, yield and TSS of Tomato (Solanum lycopersicum L.). Indian J. Hill Farming 2013, 26, 105–110. [Google Scholar]
- Boyaci, S.; Kocięcka, J.; Atilgan, A.; Liberacki, D.; Rolbiecki, R.; Saltuk, B.; Stachowski, P. Evaluation of Crop Water Stress Index (CWSI) for High Tunnel Greenhouse Tomatoes under Different Irrigation Levels. Atmosphere 2024, 15, 205. [Google Scholar] [CrossRef]
- Atilgan, A.; Rolbiecki, R.; Saltuk, B.; Jagosz, B.; Arslan, F.; Erdal, I.; Aktas, H. Deficit Irrigation Stabilizes Fruit Yield and Alters Leaf Macro and Micronutrient Concentration in Tomato Cultivation in Greenhouses: A Case Study in Turkey. Agronomy 2022, 12, 2950. [Google Scholar] [CrossRef]
- Nazarideljou, M.J.; Heidari, Z. Effects of vermicompost on growth parameters, water use efficiency and quality of zinnia bedding plants (Zinnia elegance ‘Dreamland Red’) under different ırrigation regimes. Int. J. Hortic. Sci. Technol. 2014, 1, 141–150. [Google Scholar] [CrossRef]
- Guzmán-Albores, J.M.; Montes-Molina, J.A.; Castañón-González, J.H.; Abud-Archila, M.; Gutiérrez-Miceli, F.A.; Ruíz-Valdiviezo, V.M. Effect of different vermicompost doses and water stress conditions on plant growth and biochemical profile in medicinal plant, Moringa oleifera Lam. J. Environ. Biol. 2020, 41, 240–246. [Google Scholar] [CrossRef]
- Kirda, C.; Cetin, M.; Dasgan, Y.; Topcu, S.; Kaman, H.; Ekici, B.; Derici, M.R.; Ozguven, A.I. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agric. Water Manag. 2004, 69, 191–201. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Brown, A. Understanding Food Principles and Preparation; Thomson Wadsworth: Belmont, CA, USA, 2007; pp. 245–266. [Google Scholar]
- Lovelli, S.; Potenza, G.; Castronuovo, D.; Perniola, M.; Candido, V. Yield, quality and water use efficiency of processing tomatoes produced under different irrigation regimes in Mediterranean environment. Ital. J. Agron. 2017, 12, 795. [Google Scholar] [CrossRef]
- Batu, A. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 2004, 61, 471–475. [Google Scholar] [CrossRef]
- Hong, M.; Zhang, Z.; Fu, Q.; Liu, Y. Water requirement of solar greenhouse tomatoes with drip irrigation under mulch in the Southwest of the Taklimakan Desert. Water 2022, 14, 3050. [Google Scholar] [CrossRef]
- Özkaplan, M. Serada Topraksiz Domates Yetiştiriciliğinde Büyüme, Gelişme ve Verim Üzerine ışik ve Sıcaklığın Kantitatif Etkilerinin Modellenmesi. Master’s Thesis, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun, Türkiye, 2018. [Google Scholar]
- Matas, A.J.; Gapper, N.E.; Chung, M.-Y.; Giovannoni, J.J.; Rose, J.K.C. Biology and genetic engineering of fruitmaturation for enhanced quality and shelf-life. Curr. Opin. Biotechnol. 2009, 20, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Özkaplan, M.; Balkaya, A. The effects of light and temperature on the fruit quality parameters of cluster tomatoes growing in soilless culture. Anadolu J. Agric. Sci. 2019, 34, 227–238. [Google Scholar] [CrossRef]
- Radzevičius, A.; Karklelienė, R.; Viškelis, P.; Bobinas, C.; Bobinaitė, R.; Sakalauskienė, S. Tomato (Lycopersicon esculentum Mill.) fruit quality and physiological parameters at different ripening stages of; Lithuanian cultivars. Agron. Res. 2009, 7, 712–718. [Google Scholar]
- Goel, S.; Kaur, N. Impact of Vermicompost on Growth, Yield and Quality of Tomato Plant (Lycopersicum esculentum). J. Adv. Lab. Res. Biol. 2012, 3, 281–284. [Google Scholar]
- Mukherjee, A.; Kundu, M.; Sarkar, S. Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.). Agric. Water Manag. 2010, 98, 182–189. [Google Scholar] [CrossRef]
- Kuşçu, H.; Turhan, A.; Demir, A.O. The response of processing tomato to deficit irrigation at various phenological stages in a sub-humid environment. Agric. Water Manag. 2014, 133, 92–103. [Google Scholar] [CrossRef]
- Alomran, M.; Louki, I.I.; Aly, A.A.; Nadeem, M.E. Impact of deficit irrigation on soil salinity and cucumber yield under greenhouse condition in arid environment. J. Agric. Sci. Technol. 2013, 15, 1247–1259. [Google Scholar]
- Singh, Y.; Rao, S.S.; Regar, O.L. Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment. Agric. Water Manag. 2010, 97, 965–970. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); Irrigation and Drainage Paper Nº 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Nangare, D.D.; Singh, Y.; Kumar, P.S.; Minhas, P.S. Growth, fruit yield and quality of tomato (Lycopersicon esculentum Mill.) as affected by deficit irrigation regulated on phenological basis. Agric. Water Manag. 2016, 171, 73–79. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Brunel, B.; Bertin, N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. J. Plant Physiol. 2016, 190, 26–35. [Google Scholar] [CrossRef]
- Khapte, P.; Kumar, P.; Burman, U.; Kumar, P. Defcit irrigation in tomato: Agronomical and physio-biochemical implications. Sci. Hort. 2019, 248, 256–264. [Google Scholar] [CrossRef]
- Ayas, S. Water-yield relationshıps of deficit irrigated tomato (Lycopersıcon Lycopersıcum L. Var. Hazar F1). Appl. Ecol. Environ. Res. 2019, 17, 7765–7781. [Google Scholar] [CrossRef]
- Ayas, S. The effects of different regimes on tomato (Lycopersicon lycopersicum L. var. Hazal) yield and quality characterictics under unheated greenhouse conditions. Bulg. J. Agric. Sci. 2015, 21, 1235–1241. [Google Scholar]
- Cui, J.; Shao, G.; Lu, J.; Keabetswe, L.; Hoogenboom, G. Yield, quality and drought sensitivity of tomato to water deficit during different growth stages. Sci. Agric. 2020, 77, e20180390. [Google Scholar] [CrossRef]
- Kuscu, H.; Turhan, A.; Ozmen, N.; Aydinol, P.; Demir, A.O. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hort. Environ. Biotechnol. 2014, 55, 103–114. [Google Scholar] [CrossRef]
- Kirda, C. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In FAO, Deficit Irrigation Practices; FAO Water Report No. 22; FAO: Rome, Italy, 2002; pp. 3–10. [Google Scholar]
- Kaboosi, K.; Kaveh, F. Sensitivity analysis of FAO 33 crop water production function. Irrig. Sci. 2012, 30, 89–100. [Google Scholar] [CrossRef]
- Locascio, S.J.; Smajstrla, A.G. Water application scheduling by pan evaporation for drip-irrigated tomato. J. Am. Soc. Hort. Sci. 1996, 121, 63–68. [Google Scholar] [CrossRef]
Year | Climate Parameters | May | June | July | August | |
---|---|---|---|---|---|---|
2022 | Outdoor | Tmean, °C | 15.4 | 20.2 | 22.0 | 20.3 |
RHmean, % | 60.9 | 60.5 | 50.9 | 52.9 | ||
Indoor | Tmean, °C | 24.6 | 26.7 | 28.0 | 23.7 | |
RHmean, % | 47.3 | 50.5 | 41.9 | 60.3 | ||
Long-term (1930–2021) | Tmean, °C | 15.5 | 19.7 | 23.1 | 23.0 | |
RHmean, % | 60.2 | 54.2 | 47.6 | 47.6 |
Properties | Soil | Vermicompost |
---|---|---|
pH | 8.44 | 8.27 |
EC (µS cm−1) | 135.7 | 13,300 |
CaCO3 (%) | 41.9 | 5.99 |
OM (%) | 2.65 | 37.11 |
Available P2O5 (kg da−1) | 8.70 | 379.42 |
Available K2O (kg da−1) | 72.0 | 3726.56 |
pH | EC, dS m−1 | Anions, meq L−1 | Cations, meq L−1 | SAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | K | Na | CO3 | HCO3 | Cl | SO4 | |||
7.70 | 0.62 | 2.8 | 1.20 | 0.05 | 1.40 | 0 | 5 | 0.3 | 0.3 | 1.40 |
Growth Stages of Tomato | I100VC0 | I100VC10 | I100VC20 |
---|---|---|---|
Transplanting | 11 May | 11 May | 11 May |
First flowering | 29 May | 27 May | 25 May |
Fruit setting | 8 June | 6 June | 4 June |
First picking | 17 July | 14 July | 10 July |
Last picking | 8 August | 8 August | 8 August |
Treatments | Stem Diameter (mm) | Plant Height (cm) | Number of Leaves (Pieces) | Number of Flowers (Pieces) | Stem Wet Weight (g) | Stem Dry Weight (g) | Root Wet Weight (g) | Root Dry Weight (g) |
---|---|---|---|---|---|---|---|---|
I50VC0 | 11.4 d | 67.2 b | 17.2 c | 13.3 d | 90.5 c | 42.2 cd | 49.0 cd | 27.4 de |
I75VC0 | 11.6 d | 78.6 b | 17.0 c | 16.2 d | 94.7 c | 37.4 de | 43.1 d | 21.4 ef |
I100VC0 | 11.6 d | 77.3 b | 16.7 c | 15.5 d | 70.3 c | 30.8 e | 40.6 d | 14.3 f |
I50VC10 | 14.9 a | 76.3 b | 17.8 c | 20.5 c | 165.0 b | 50.7 ab | 110.6 a | 46.6 a |
I75VC10 | 12.3 cd | 98.5 a | 21.2 ab | 20.7 bc | 193.3 b | 56.9 a | 83.1 b | 39.7 ab |
I100VC10 | 13.2 bc | 105.8 a | 20.8 ab | 21.3 bc | 181.4 b | 55.8 a | 73.6 b | 32.7 bcd |
I50VC20 | 13.8 ab | 79.4 b | 19.8 b | 23.0 bc | 195.8 b | 44.4 bcd | 91.2 ab | 38.6 abc |
I75VC20 | 12.9 bc | 82.0 b | 21.7 a | 26.8 a | 243.0 a | 55.0 a | 107.9 a | 47.1 a |
I100VC20 | 13.3 bc | 111.0 a | 20.5 ab | 23.7 b | 182.0 b | 48.2 abc | 71.1 bc | 29.8 cde |
Irrigation | ** | ** | ** | * | ** | NS | ** | ** |
VC | ** | ** | ** | ** | ** | ** | ** | ** |
Irrigation × VC | * | NS | ** | NS | NS | * | * | NS |
Treatments | Width (mm) | Length (mm) | Weight (g) | pH | Firmness (kg m−2) | TA (%) | TSS (°Brix) | Hue | Chrome |
---|---|---|---|---|---|---|---|---|---|
I50VC0 | 40.8 d | 36.5 d | 35.2 d | 4.2 ab | 2.1 d | 0.35 ef | 4.42 d | 20.1 c | 94.1 ab |
I75VC0 | 45.4 bc | 39.3 cd | 45.2 cd | 4.2 bc | 2.5 b | 0.40 de | 3.50 f | 25.8 a | 64.2 cd |
I100VC0 | 55.7 a | 47.4 b | 70.3 b | 4.1 cd | 2.1 d | 0.33 f | 2.80 g | 26.2 a | 70.8 bc |
I50VC10 | 41.5 cd | 36.6 d | 35.5 d | 4.3 a | 2.0 d | 0.50 c | 6.05 b | 20.0 c | 93.6 ab |
I75VC10 | 46.9 b | 39.9 cd | 50.4 c | 4.1 bc | 2.0 d | 0.50 c | 5.20 c | 23.4 ab | 45.0 d |
I100VC10 | 56.9 a | 46.5 b | 84.2 a | 4.1 cd | 2.2 cd | 0.42 d | 4.10 e | 21.6 bc | 87.3 abc |
I50VC20 | 41.4 cd | 41.4 c | 34.4 d | 4.1 cd | 2.0 d | 0.70 a | 7.08 a | 25.3 a | 67.9 c |
I75VC20 | 47.7 b | 47.7 b | 51.5 c | 4.1 de | 3.0 a | 0.60 b | 6.88 a | 24.3 ab | 96.0 a |
I100VC20 | 55.5 a | 55.5 a | 79.8 ab | 4.0 e | 2.3 c | 0.5 c | 4.63 d | 23.5 ab | 71.5 bc |
Irrigation | ** | ** | ** | ** | ** | ** | ** | ** | * |
VC | NS | ** | NS | ** | ** | ** | ** | ** | NS |
Irrigation × VC | NS | NS | NS | NS | ** | ** | ** | ** | ** |
Treatments | ET (L) | Total Yield (g L−1) | Marketable Yield (g L−1) | Total WUE (g L−1) | Marketable WUE (g L−1) |
---|---|---|---|---|---|
I50VC0 | 21.2 h | 233.7 h | 165.3 h | 11.0 h | 7.8 h |
I75VC0 | 28.9 e | 368.3 g | 322.3 f | 12.8 g | 11.2 f |
I100VC0 | 35.5 b | 492.2 e | 492.2 d | 13.9 e | 13.9 d |
I50VC10 | 27.6 f | 362.0 g | 276.8 g | 13.1 fg | 10.0 g |
I75VC10 | 38.5 c | 522.8 d | 470.5 e | 13.6 ef | 12.2 e |
I100VC10 | 47.8 a | 908.3 b | 908.3 b | 19.0 c | 19.0 b |
I50VC20 | 25.7 g | 399.5 f | 326.9 f | 15.6 d | 12.7 e |
I75VC20 | 35.6 b | 700.0 c | 646.2 c | 19.7 b | 18.2 c |
I100VC20 | 43.3 b | 947.9 a | 947.9 a | 21.9 a | 21.9 a |
Irrigation | ** | ** | ** | ** | ** |
VC | ** | ** | ** | ** | ** |
Irrigation × VC | ** | ** | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyacı, S.; Kocięcka, J.; Atilgan, A.; Niemiec, M.; Liberacki, D.; Rolbiecki, R. Determination of the Effects of Different Irrigation Levels and Vermicompost Doses on Water Consumption and Yield of Greenhouse-Grown Tomato. Water 2024, 16, 1095. https://doi.org/10.3390/w16081095
Boyacı S, Kocięcka J, Atilgan A, Niemiec M, Liberacki D, Rolbiecki R. Determination of the Effects of Different Irrigation Levels and Vermicompost Doses on Water Consumption and Yield of Greenhouse-Grown Tomato. Water. 2024; 16(8):1095. https://doi.org/10.3390/w16081095
Chicago/Turabian StyleBoyacı, Sedat, Joanna Kocięcka, Atilgan Atilgan, Marcin Niemiec, Daniel Liberacki, and Roman Rolbiecki. 2024. "Determination of the Effects of Different Irrigation Levels and Vermicompost Doses on Water Consumption and Yield of Greenhouse-Grown Tomato" Water 16, no. 8: 1095. https://doi.org/10.3390/w16081095
APA StyleBoyacı, S., Kocięcka, J., Atilgan, A., Niemiec, M., Liberacki, D., & Rolbiecki, R. (2024). Determination of the Effects of Different Irrigation Levels and Vermicompost Doses on Water Consumption and Yield of Greenhouse-Grown Tomato. Water, 16(8), 1095. https://doi.org/10.3390/w16081095