Figure 1.
Map scheme of the location of the surveyed parts of the Irtysh River basin, July 2023. A—Black Irtysh River, B—Pavlodar Irtysh region. Arabic numerals: 1—left tributary Kenderlik, 2—right tributary Kalzhir, 3—right tributary Bukhtarma, 4—upper Irtysh cascade of reservoirs. The arrow shows the direction of flow of the Irtysh River, determining left-bank or right-bank tributaries from up to downstream (the river flow direction).
Figure 1.
Map scheme of the location of the surveyed parts of the Irtysh River basin, July 2023. A—Black Irtysh River, B—Pavlodar Irtysh region. Arabic numerals: 1—left tributary Kenderlik, 2—right tributary Kalzhir, 3—right tributary Bukhtarma, 4—upper Irtysh cascade of reservoirs. The arrow shows the direction of flow of the Irtysh River, determining left-bank or right-bank tributaries from up to downstream (the river flow direction).
Figure 2.
Tributaries of the Black Irtysh River, July 2023: (a) right tributary Kalzhir, mountainous part; (b) right tributary Kalzhir, before flowing into the Black Irtysh River; (c,d) left tributary Kenderlik. Photo by E. Krupa.
Figure 2.
Tributaries of the Black Irtysh River, July 2023: (a) right tributary Kalzhir, mountainous part; (b) right tributary Kalzhir, before flowing into the Black Irtysh River; (c,d) left tributary Kenderlik. Photo by E. Krupa.
Figure 3.
The Irtysh River in the Pavlodar region, July 2023: (a) sand mining in the riverbed (below Pavlodar City); (b) wastewater discharge into the Irtysh River (Terenkol village); (c) water intake in the area of Zhelezinka village; (d) water intake in the area of Terenkol village. Photos by E. Krupa and A. Linnik.
Figure 3.
The Irtysh River in the Pavlodar region, July 2023: (a) sand mining in the riverbed (below Pavlodar City); (b) wastewater discharge into the Irtysh River (Terenkol village); (c) water intake in the area of Zhelezinka village; (d) water intake in the area of Terenkol village. Photos by E. Krupa and A. Linnik.
Figure 4.
Surveyed parts of the Irtysh River, July 2023: (a) Part I (the Black Irtysh River); (b) Part II (the Irtysh River above Aksu city); (c) Part III (the Irtysh River in the zone of influence of Aksu city); (d) Part III (the Irtysh River in the zone of influence of Pavlodar city); (e) Part IV (the Irtysh River below Pavlodar city); (f) Part IV (the Irtysh River below Pavlodar city, 15 km from the border with Russia). Photos by E. Krupa.
Figure 4.
Surveyed parts of the Irtysh River, July 2023: (a) Part I (the Black Irtysh River); (b) Part II (the Irtysh River above Aksu city); (c) Part III (the Irtysh River in the zone of influence of Aksu city); (d) Part III (the Irtysh River in the zone of influence of Pavlodar city); (e) Part IV (the Irtysh River below Pavlodar city); (f) Part IV (the Irtysh River below Pavlodar city, 15 km from the border with Russia). Photos by E. Krupa.
Figure 5.
Material sampling stations in the Black Irtysh (Part I) and Pavlodar Irtysh (Parts II–IV) regions, July 2023. Roman numerals indicate the numbers of surveyed parts of the Irtysh River basin. Arabic numerals indicate station numbers. Arrows indicate the direction of flow.
Figure 5.
Material sampling stations in the Black Irtysh (Part I) and Pavlodar Irtysh (Parts II–IV) regions, July 2023. Roman numerals indicate the numbers of surveyed parts of the Irtysh River basin. Arabic numerals indicate station numbers. Arrows indicate the direction of flow.
Figure 6.
Higher aquatic and semi-aquatic vegetation in the lower reaches of the Irtysh River, July 2023: (a) filamentous algae; (b) umbrella pine Butomus umbellatus L.; (c) pondweed Potamogeton perfoliatus L.; (d) common reed Phragmites australis (Cav.) Trin. ex Steud. Photos by E. Krupa.
Figure 6.
Higher aquatic and semi-aquatic vegetation in the lower reaches of the Irtysh River, July 2023: (a) filamentous algae; (b) umbrella pine Butomus umbellatus L.; (c) pondweed Potamogeton perfoliatus L.; (d) common reed Phragmites australis (Cav.) Trin. ex Steud. Photos by E. Krupa.
Figure 7.
The similarity of the species composition of planktonic invertebrates in the Irtysh River according to JASP analysis, July 2023: (a) comparison between individual stations; (b) comparison across selected parts of the Irtysh River, where I—the Black Irtysh River from the border with China to its confluence with the Zaisan Lake, II—the Irtysh River above Pavlodar city, III—the Irtysh River in the zone of influence of the Pavlodar and Aksu cities, IV—the lower part of the Irtysh River to the border with Russia. Arabic numerals indicate the numbers of stations within each of the surveyed parts. The colour and line width between points reflect the correlation: blue—positive, red—negative, and the colour saturation—correlation strength.
Figure 7.
The similarity of the species composition of planktonic invertebrates in the Irtysh River according to JASP analysis, July 2023: (a) comparison between individual stations; (b) comparison across selected parts of the Irtysh River, where I—the Black Irtysh River from the border with China to its confluence with the Zaisan Lake, II—the Irtysh River above Pavlodar city, III—the Irtysh River in the zone of influence of the Pavlodar and Aksu cities, IV—the lower part of the Irtysh River to the border with Russia. Arabic numerals indicate the numbers of stations within each of the surveyed parts. The colour and line width between points reflect the correlation: blue—positive, red—negative, and the colour saturation—correlation strength.
Table 1.
Description of the surveyed parts of the Irtysh River, indicating potential sources of pollution.
Table 1.
Description of the surveyed parts of the Irtysh River, indicating potential sources of pollution.
Part Number | Description | Length, km | Number of Stations | Altitude above Sea Level | Potential Sources of Pollution |
---|
I | Black Irtysh River | 120 | 5 | 390–419 | Buran and Ordynka villages, transboundary flow from China |
II | Above Pavlodar and Aksu cities | 236 | 7 | 113–172 | Kurchatov City, flow from the upper Irtysh cascade of reservoirs |
III | Zone of influence of Pavlodar and Aksu cities | 81 | 7 | 101–115 | Pavlodar and Aksu cities, surface runoff |
IV | Below Naberezhnoe village | 316 | 8 | 79–102 | Settlements, surface runoff |
Table 2.
Hydrophysical, hydrochemical, and toxicological characteristics of the surveyed parts of the Irtysh River, July 2023 (mean and standard error).
Table 2.
Hydrophysical, hydrochemical, and toxicological characteristics of the surveyed parts of the Irtysh River, July 2023 (mean and standard error).
Variable | 1 The Part of the Irtysh River |
---|
I | II | III | IV |
---|
Temperature, °C | 23.00 ± 0.17 | 24.90 ± 0.26 | 24.40 ± 0.38 | 25.20 ± 0.13 |
pH | 7.20 ± 0.06 | 7.90 ± 0.06 | 7.60 ± 0.03 | 7.70 ± 0.05 |
Oxygen, mg/dm3 | 9.04 ± 0.06 | 8.44 ± 0.40 | 8.39 ± 0.29 | 10.07 ± 0.06 |
TDS, mg/dm3 | 100.7 ± 3.4 | 176.2 ± 3.0 | 177.7 ± 2.3 | 175.5 ± 3.2 |
Hardness, mg.eq./dm3 | 1.03 ± 0.04 | 1.70 ± 0.01 | 1.72 ± 0.01 | 1.75 ± 0.01 |
PI, mgO/dm3 | 5.21 ± 0.75 | 5.59 ± 0.84 | 3.98 ± 0.14 | 3.94 ± 0.15 |
N-NO3, mg/dm3 | 0.319 ± 0.169 | 0.009 ± 0.007 | 0.018 ± 0.018 | 0.007 ± 0.004 |
N-NO2, mg/dm3 | 0.027 ± 0.004 | 0.046 ± 0.005 | 0.063 ± 0.008 | 0.043 ± 0.007 |
N-NH4, mg/dm3 | 0.193 ± 0.124 | 0.384 ± 0.026 | 0.525 ± 0.058 | 0.482 ± 0.035 |
Total N, mg/dm3 | 0.539 ± 0.166 | 0.440 ± 0.026 | 0.606 ± 0.080 | 0.532 ± 0.035 |
PO4, mg/dm3 | 0.034 ± 0.010 | 0.023 ± 0.004 | 0.021 ± 0.006 | 0.028 ± 0.002 |
Si, mg/dm3 | 4.02 ± 0.58 | 3.87 ± 0.46 | 4.01 ± 0.39 | 3.97 ± 0.25 |
Fe, mg/dm3 | 0.58 ± 0.07 | 0.14 ± 0.01 | 0.28 ± 0.08 | 0.31 ± 0.04 |
Mn, µg/dm3 | 30.0 ± 3.7 | 78.6 ± 13.6 | 85.1 ± 17.2 | 116.0 ± 11.6 |
Cd, µg/dm3 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.01 | 0.06 ± 0.01 |
Co, µg/dm3 | 0.06 ± 0.01 | 0.16 ± 0.04 | 0.11 ± 0.03 | 2.60 ± 2.86 |
Cr, µg/dm3 | 0.93 ± 0.33 | 2.24 ± 0.03 | 2.67 ± 0.34 | 38.00 ± 34.57 |
Cu, µg/dm3 | 0.61 ± 0.21 | 2.22 ± 0.10 | 1.80 ± 0.08 | 3.90 ± 2.30 |
Pb, µg/dm3 | 0.07 ± 0.03 | 0.04 ± 0.0 | 0.08 ± 0.04 | 0.04 ± 0.00 |
Zn, µg/dm3 | 1.00 ± 0.00 | 15.61 ± 9.61 | 7.59 ± 4.02 | 28.61 ± 25.24 |
Hg, µg/dm3 | below detection limit |
Table 3.
Spearman correlation coefficients (R) between environmental variables of the Irtysh River, July 2023, at p < 0.05.
Table 3.
Spearman correlation coefficients (R) between environmental variables of the Irtysh River, July 2023, at p < 0.05.
Pair of Variables | R | Pair of Variables | R | Pair of Variables | R |
---|
Altitude–Temperature | −0.490 | Altitude–Cr | −0.731 | Cu–Co | 0.731 |
Altitude–Hardness | −0.664 | Fe–pH | −0.625 | Cu–Zn | 0.674 |
Altitude–PI | 0.664 | Temperature–TDS | 0.584 | Cu–pH | 0.632 |
Altitude–N-NH4 | −0.586 | Fe–Co | −0.607 | Cr–Mn | 0.693 |
Altitude–Mn | −0.585 | Fe–Cu | −0.595 | TDS–Fe | −0.594 |
Table 4.
Species composition and frequency of occurrence of planktonic invertebrates in the Irtysh River, July 2023.
Table 4.
Species composition and frequency of occurrence of planktonic invertebrates in the Irtysh River, July 2023.
Taxon Name | Part of the Irtysh River |
---|
I | II | III | IV |
---|
Rotifera |
Asplanchna henrietta (Langhans) | 0 | 0 | 13 | 57 |
Asplanchna intermedia (Hudson) | 20 | 0 | 13 | 0 |
Asplanchna priodonta (Gosse) | 0 | 0 | 13 | 0 |
Asplanchna sieboldi (Leydig) | 0 | 0 | 0 | 14 |
Bdelloida gen. sp. | 60 | 29 | 63 | 100 |
Brachionus angularis (Gosse) | 40 | 29 | 88 | 100 |
Brachionus bennini (Leissling) | 20 | 0 | 75 | 71 |
Brachionus budapestiensis (Daday) | 0 | 0 | 13 | 0 |
Brachionus calyciflorus (Pallas) | 0 | 0 | 0 | 29 |
Brachionus calyciflorus anuraeiformis (Brehm) | 0 | 0 | 0 | 29 |
Brachionus calyciflorus dorcas (Gosse) | 0 | 0 | 13 | 57 |
Brachionus diversicornis (Daday) | 0 | 0 | 25 | 71 |
Brachionus diversicornis homoceros (Wierzejski) | 0 | 0 | 0 | 14 |
Brachionus plicatilis (Muller) | 0 | 0 | 0 | 14 |
Brachionus quadridentatus (Hermann) | 40 | 0 | 13 | 29 |
Brachionus quadridentatus zernovi (Voronkov) | 0 | 29 | 13 | 14 |
Brachionus quadridentatus ancylognathus (Schmarda) | 0 | 0 | 0 | 29 |
Brachionus quadridentatus brevispinus (Ehrenberg) | 0 | 0 | 13 | 43 |
Brachionus variabilis (Hempel) | 20 | 0 | 0 | 71 |
Keratella cochlearis (Gosse) | 40 | 43 | 50 | 86 |
Keratella cochlearis tecta (Gosse) | 0 | 14 | 0 | 29 |
Keratella quadrata (Muller) | 20 | 0 | 0 | 0 |
Keratella quadrata dispersa (Carlin) | 40 | 0 | 0 | 0 |
Cephalodella gibba (Ehrenberg) | 0 | 14 | 0 | 0 |
Cephalodella sp. | 20 | 0 | 13 | 14 |
Euchlanis calpidia (Myers) | 0 | 14 | 0 | 0 |
Euchlanis deflexa (Gosse) | 0 | 14 | 0 | 0 |
Euchlanis lyra (Hudson) | 0 | 14 | 0 | 0 |
Euchlanis oropha (Gosse) | 40 | 43 | 13 | 14 |
Euchlanis sp. | 40 | 29 | 0 | 0 |
Filinia longiseta (Ehrenberg) | 40 | 0 | 13 | 100 |
Hexarthra mira (Hudson) | 0 | 0 | 0 | 14 |
Hexarthra intermedia (Wiszniewski) | 0 | 0 | 0 | 14 |
Lecane (Monostyla) bulla (Gosse) | 20 | 0 | 0 | 0 |
Lecane (Monostyla) sp. | 0 | 14 | 0 | 0 |
Lecane (s.str.) flexilis (Gosse) | 0 | 14 | 0 | 0 |
Notholca acuminata (Ehrenberg) | 20 | 0 | 0 | 0 |
Notommatidae gen. sp. | 0 | 0 | 13 | 0 |
Platyias patulus (Muller) | 0 | 0 | 13 | 0 |
Polyarthra dolichoptera (Idelson) | 20 | 0 | 0 | 29 |
Polyarthra luminosa (Kutikova) | 0 | 0 | 0 | 14 |
Polyarthra major (Burchhardt) | 0 | 0 | 25 | 14 |
Polyarthra minor (Voigt) | 0 | 0 | 0 | 57 |
Polyarthra remata (Skorikov) | 0 | 0 | 0 | 14 |
Polyarthra vulgaris (Carlin) | 0 | 0 | 0 | 14 |
Pompholyx sulcata (Hudson) | 0 | 0 | 0 | 57 |
Postclausa hyptopus (Ehrenberg) | 60 | 0 | 0 | 0 |
Synchaeta pectinata (Ehrenberg) | 40 | 0 | 0 | 0 |
Synchaeta stylata (Wierzejski) | 40 | 0 | 25 | 71 |
Testudinella patina (Hermann) | 0 | 14 | 0 | 0 |
Trichocerca (Diurella) bidens (Lucks) | 0 | 0 | 0 | 14 |
Trichocerca (Diurella) sp. | 0 | 0 | 0 | 14 |
Trichocerca (Diurella) myersi (Hauer) | 0 | 0 | 0 | 43 |
Trichocerca (s.str.) cylindrica (Imhof) | 0 | 0 | 0 | 57 |
Trichocerca longiseta (Schrank) | 0 | 0 | 0 | 14 |
Trichocerca sp. | 0 | 0 | 0 | 14 |
Trichotria pocillum (Muller) | 0 | 14 | 13 | 0 |
Trichotria tetractis (Ehrenberg) | 0 | 0 | 13 | 0 |
Trichotria truncata (Whitel.) | 0 | 0 | 0 | 43 |
Rotifera gen. sp. | 0 | 0 | 0 | 14 |
Total Rotifera | 19 | 15 | 22 | 39 |
Cladocera |
Alona affinis (Leydig) | 20 | 14 | 13 | 0 |
Alona rectangula (Sars) | 0 | 0 | 13 | 0 |
Bosmina (Bosmina) kessleri (Uljanin) | 0 | 0 | 0 | 14 |
Bosmina (Bosmina) longirostris (O.F. Muller) | 80 | 0 | 13 | 86 |
Bosminopsis deitersi (Richard) | 0 | 14 | 50 | 100 |
Ceriodaphnia pulchella (Sars) | 0 | 0 | 0 | 14 |
Diaphanosoma sp. | 0 | 14 | 0 | 43 |
Ilyocryptus acutifrons (Sars) | 0 | 0 | 13 | 0 |
Pleuroxus trigonellus (O.F.Muller) | 0 | 14 | 50 | 29 |
Scapholeberis mucronata (O.F.Muller) | 0 | 14 | 0 | 0 |
Sida crystallina (O.F.Muller) | 0 | 0 | 13 | 0 |
Macrothrix hirsuticornis (Norman et Brady) | 0 | 14 | 13 | 14 |
Total Cladocera | 2 | 6 | 8 | 7 |
Copepoda |
Acanthocyclops robustus (Sars) | 0 | 0 | 0 | 14 |
Ectocyclops phaleratus (Koch) | 0 | 14 | 13 | 0 |
Eucyclops serrulatus (Lilljeborg) | 20 | 0 | 0 | 0 |
Eucyclopinae gen.sp. | 60 | 29 | 38 | 14 |
Mesocyclops leuckarti (Claus) | 100 | 43 | 75 | 100 |
Microcyclops afghanicus (Lindberg) | 0 | 29 | 0 | 0 |
Paracyclops affinis (Sars) | 0 | 0 | 13 | 0 |
Thermocyclops crassus (Fischer) | 0 | 0 | 50 | 43 |
Cyclopoida gen.sp. | 0 | 29 | 0 | 0 |
Harpacticoida gen.sp. | 20 | 14 | 38 | 0 |
Total Copepoda | 4 | 6 | 6 | 4 |
Total species | 25 | 27 | 36 | 50 |
Table 5.
Quantitative variables of zooplankton in the Irtysh River (mean with standard error), July 2023.
Table 5.
Quantitative variables of zooplankton in the Irtysh River (mean with standard error), July 2023.
Part of the Irtysh River | Rotifera | Cladocera | Copepoda | Total |
---|
Abundance, specimen/m3 |
I | 147 ± 75 | 16 ± 7 | 161 ± 92 | 326 ± 164 |
II | 276 ± 123 | 109 ± 98 | 135 ± 69 | 526 ± 206 |
III | 455 ± 137 | 91 ± 26 | 361 ± 80 | 906 ± 198 |
IV | 23,582 ± 6388 | 181 ± 20 | 395 ± 46 | 24,158 ± 6362 |
Average abundance | 6347 ± 2538 | 105 ± 28 | 274 ± 41 | 6728 ± 2553 |
Biomass, mg/m3 |
I | 0.22 ± 0.09 | 0.12 ± 0.04 | 0.27 ± 0.11 | 0.62 ± 0.18 |
II | 0.35 ± 0.20 | 1.00 ± 0.94 | 0.16 ± 0.09 | 1.54 ± 1.23 |
III | 0.41 ± 0.09 | 0.66 ± 0.18 | 0.50 ± 0.19 | 1.57 ± 0.17 |
IV | 5.04 ± 1.17 | 0.98 ± 0.25 | 1.03 ± 0.20 | 7.05 ± 1.40 |
Average biomass | 1.56 ± 0.50 | 0.73 ± 0.25 | 0.51 ± 0.10 | 2.81 ± 0.68 |
Table 6.
Composition of dominant species in the zooplankton of the Irtysh River, July 2023.
Table 6.
Composition of dominant species in the zooplankton of the Irtysh River, July 2023.
Taxon Name | Part of the Irtysh River |
---|
I | II | III | IV | I | II | III | IV |
---|
Abundance, % | Biomass, % |
---|
Bdelloida gen. sp. | 21.7 | 4.8 | 5.1 | 0.7 | 19.3 | 13.5 | 11.8 | 3.2 |
Brachionus angularis | 1.2 | 1.4 | 31.5 | 71.9 | 0.1 | 0.1 | 2.4 | 43.5 |
Euchlanis oropha | 2.5 | 19.9 | 0.4 | 0.02 | 1.6 | 4.6 | 0.1 | 0.02 |
Eucyclops serrulatus | 27.4 | 6.2 | 1.0 | 4.4 | 17.0 | 0.7 | 0.3 | 0.1 |
Scapholeberis mucronata | 0.0 | 2.5 | 0.0 | 0.0 | 0.0 | 20.9 | 0.0 | 0.0 |
Bosmina longirostris | 4.3 | 0.0 | 0.7 | 0.2 | 15.7 | 0.0 | 3.2 | 3.0 |
Mesocyclops leuckarti | 21.5 | 1.7 | 23.1 | 1.4 | 27.2 | 2.0 | 11.8 | 11.8 |
Thermocyclops crassus | 0.0 | 0.0 | 14.7 | 0.2 | 0.0 | 0.0 | 17.4 | 2.5 |
Table 7.
Structural variables of zooplankton in the Irtysh River (mean with standard error), July 2023.
Table 7.
Structural variables of zooplankton in the Irtysh River (mean with standard error), July 2023.
Part of the Irtysh River | Average Species Number | Shannon Ab | Shannon Bi | ∆-Shannon | Average Individual Mass, mg |
---|
I | 9.6 ± 1.9 | 2.48 ± 0.24 | 1.91 ± 0.35 | 0.57 ± 0.24 | 0.0031 ± 0.0010 |
II | 5.7 ± 1.7 | 1.82 ± 0.43 | 1.23 ± 0.36 | 0.59 ± 0.15 | 0.0016 ± 0.0010 |
III | 9.5 ± 0.9 | 2.40 ± 0.14 | 2.10 ± 0.14 | 0.35 ± 0.18 | 0.0028 ± 0.0008 |
IV | 19.7 ± 1.4 | 1.67 ± 0.11 | 2.69 ± 0.13 | −0.88 ± 0.20 | 0.0004 ± 0.0001 |
Average | 11.2 ± 1.2 | 2.08 ± 0.14 | 1.99 ± 0.16 | 0.08 ± 0.15 | 0.0019 ± 0.0004 |
Table 8.
Spearman correlation coefficients (R) between biological and environmental variables of the Irtysh River in July 2023, p < 0.05.
Table 8.
Spearman correlation coefficients (R) between biological and environmental variables of the Irtysh River in July 2023, p < 0.05.
Pair Variables | R | Pair Variables | R |
---|
Altitude–Rotifera Ab | −0.795 | Rotifera Ab–Cr | 0.603 |
Altitude–Cladocera Ab | −0.720 | Rotifera Ab–N-NH4 | 0.565 |
Altitude–Copepoda Ab | −0.642 | Rotifera Ab–Hardness | 0.603 |
Altitude–Total Ab | −0.852 | Cladocera Ab–PI | −0.620 |
Altitude–Species Number | −0.657 | Cladocera Ab–Cr | −0.620 |
Altitude–Shannon Bi | −0.563 | Cladocera Ab–N-NH4 | 0.468 |
Altitude–Average Mass | 0.596 | Copepda Ab–N-NH4 | 0.446 |
Rotifera Ab–PI | −0.471 | Average Mass–Temperature | −0.580 |
Rotifera Ab–Oxygen | 0.544 | Average Mass–Cr | −0.614 |
Table 9.
Assessment of the level of pollution of the surveyed parts of the Irtysh River by chemical variables, July 2023.
Table 9.
Assessment of the level of pollution of the surveyed parts of the Irtysh River by chemical variables, July 2023.
Variable | I | II | III | IV | 1 MPCfw (mg/dm3) | I | II | III | IV |
---|
Multiplicity of Exceeding MPCfw | Water Quality Classes |
---|
2 PI | – | – | – | – | – | 2b | 2b | 2a | 2a |
2 N-NO3 | 0.04 | 0.001 | 0.002 | 0.0008 | 9.10 | 2b | 1 | 1 | 1 |
2 N-NO2 | 1.35 | 2.3 | 3.15 | 2.15 | 0.02 | 4a | 4a | 4b | 4a |
2 N-NH4 | 0.39 | 0.77 | 1.05 | 0.96 | 0.50 | 2b | 3b | 4a | 3b |
2 PO4 | 0.68 | 0.46 | 0.42 | 0.56 | 0.05 | 3a | 2b | 2b | 2b |
Fe | 5.8 | 1.4 | 2.8 | 3.1 | 0.10 | – | – | – | – |
Mn | 3.0 | 7.9 | 8.5 | 11.6 | 0.01 | – | – | – | – |
3 Cd | 0.10 | 0.10 | 0.12 | 0.12 | 0.0005 | 1 | 1 | 1 | 1 |
3 Co | 0.006 | 0.016 | 0.011 | 0.26 | 0.01 | 1 | 1 | 1 | 1 |
3 Cr | 0.2 | 0.4 | 0.5 | 7.6 | 0.005 | 1 | 1 | 1 | 4 |
3 Cu | 0.6 | 2.2 | 1.8 | 3.9 | 0.001 | 1 | 2 | 2 | 2 |
3 Pb | 0.007 | 0.004 | 0.008 | 0.004 | 0.01 | 1 | 1 | 1 | 1 |
3 Zn | 0.1 | 1.5 | 0.8 | 2.8 | 0.01 | 1 | 3 | 1 | 4 |
3 Hg | Below detection limit | 0.0001 | 1 | 1 | 1 | 1 |
Table 10.
The ratio of nitrogen forms (percentage of the total amount) in the water of the surveyed parts of the Irtysh River, July 2023 (mean with standard error).
Table 10.
The ratio of nitrogen forms (percentage of the total amount) in the water of the surveyed parts of the Irtysh River, July 2023 (mean with standard error).
Variable | Part of the Irtysh River |
---|
I | II | III | IV |
---|
N-NO3 | 45.0 ± 18.7 | 2.1 ± 1.6 | 1.7 ± 1.7 | 0.3 ± 0.6 |
N-NO2 | 16.7 ± 12.5 | 10.6 ± 0.9 | 10.5 ± 0.6 | 8.3 ± 1.2 |
N-NH4 | 38.3 ± 15.4 | 87.3 ± 2.3 | 87.8 ± 1.9 | 90.4 ± 1.2 |