On the Use of Weather Generators for the Estimation of Low-Frequency Floods under a Changing Climate
Abstract
1. Introduction
2. Case Study
2.1. Study Area
2.2. Hydrometeorological Information
3. Methodology
3.1. Bias Correction of Climate Series
3.2. Regional Study of Maximum Daily Precipitation
3.3. Weather Generator: GWEX
3.4. Ecohydrological Model: TETIS
4. Results
4.1. Temperatures
4.2. Precipitation
4.3. Discharges
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidson, R.; Richards, K.S. Flood frequency analysis: Assumptions and alternatives. Prog. Phys. Geogr. 2005, 29, 392–410. [Google Scholar] [CrossRef]
- Lisø, K.R.; Kvande, T.; Time, B. Climate Adaptation Framework for Moisture-resilient Buildings in Norway. Energy Procedia 2017, 132, 628–633. [Google Scholar] [CrossRef]
- Metzger, A.; Marra, F.; Smith, J.A.; Morin, E. Flood frequency estimation and uncertainty in arid/semi-arid regions. J. Hydrol. 2020, 590, 125254. [Google Scholar] [CrossRef]
- Soltani, A.; Hoogenboom, G. Minimum data requirements for parameter estimation of stochastic weather generators. Clim. Res. 2003, 25, 109–119. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Process controls on the statistical flood moments—A data based analysis. Hydrol. Process. 2009, 23, 675–696. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. Flood frequency hydrology: 2. Combining data evidence. Water Resour. Res. 2008, 44, W08433. [Google Scholar] [CrossRef]
- Benito, G.; Sanchez-Moya, Y.; Medialdea, A.; Barriendos, M.; Calle, M.; Rico, M.; Sopeña, A.; Machado, M.J. Extreme Floods in Small Mediterranean Catchments: Long-Term Response to Climate Variability and Change. Water 2020, 12, 1008. [Google Scholar] [CrossRef]
- Evin, G.; Favre, A.C.; Hingray, B. Stochastic generation of multi-site daily precipitation focusing on extreme events. Hydrol. Earth Syst. Sci. 2018, 22, 655–672. [Google Scholar] [CrossRef]
- Beneyto, C.; Aranda, J.Á.; Benito, G.; Francés, F. New approach to estimate extreme flooding using continuous synthetic simulation supported by regional precipitation and non-systematic flood data. Water 2020, 12, 3174. [Google Scholar] [CrossRef]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Paprotny, D.; Morales-Nápoles, O. Estimating extreme river discharges in Europe through a Bayesian network. Hydrol. Earth Syst. Sci. 2017, 21, 2615–2636. [Google Scholar] [CrossRef]
- IPCC. IPCC AR6 WGII Sixth Assessment Report; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Roudier, P.; Andersson, J.C.M.; Donnelly, C.; Feyen, L.; Greuell, W.; Ludwig, F. Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Clim. Chang. 2016, 135, 341–355. [Google Scholar] [CrossRef]
- Soriano, E.; Mediero, L.; Garijo, C. Quantification of Expected Changes in Peak Flow Quantiles in Climate Change by Combining Continuous Hydrological Modelling with the Modified Curve Number Method. Water Resour. Manag. 2020, 34, 4381–4397. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; He, S.; Guo, J.; Hong, X.; Liu, Z. A copula-based analysis of projected climate changes to bivariate flood quantiles. J. Hydrol. 2018, 566, 23–42. [Google Scholar] [CrossRef]
- Jain, S. Downscaling Methods in Climate Change Studies. Nihroorkee.Gov.in 2014, 1–18. [Google Scholar]
- Hay, L.E.; Wilby, R.L.; Leavesley, G.H. A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J. Am. Water Resour. Assoc. 2000, 36, 387–397. [Google Scholar] [CrossRef]
- Gleick, P.H. Methods for evaluating the regional hydrologic impacts of global climatic changes. J. Hydrol. 1986, 88, 97–116. [Google Scholar] [CrossRef]
- Hay, L.E.; Clark, M.P. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol. 2003, 282, 56–75. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themel, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, RG3003. [Google Scholar] [CrossRef]
- Pierce, D.W.; Cayan, D.R.; Maurer, E.P.; Abatzoglou, J.T.; Hegewisch, K.C. Improved bias correction techniques for hydrological simulations of climate change. J. Hydrometeorol. 2015, 16, 2421–2442. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. A multivariate quantile-matching bias correction approach with auto- and cross-dependence across multiple time scales: Implications for downscaling. J. Clim. 2016, 29, 3519–3539. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2011, 112, 449–468. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef]
- Beranová, R.; Kyselý, J.; Hanel, M. Characteristics of sub-daily precipitation extremes in observed data and regional climate model simulations. Theor. Appl. Climatol. 2018, 132, 515–527. [Google Scholar] [CrossRef]
- Faghih, M.; Brissette, F.; Sabeti, P. Impact of correcting sub-daily climate model biases for hydrological studies. Hydrol. Earth Syst. Sci. 2022, 26, 1545–1563. [Google Scholar] [CrossRef]
- Requena, A.I.; Nguyen, T.H.; Burn, D.H.; Coulibaly, P.; Nguyen, V.T. Van A temporal downscaling approach for sub-daily gridded extreme rainfall intensity estimation under climate change. J. Hydrol. Reg. Stud. 2021, 35, 100811. [Google Scholar] [CrossRef]
- World Meteorological Organization. WMO Guidelines on the Calculation of Climate Normals; WMO-No. 1203; World Meteorological Organization: Geneva, Switzerland, 2017; p. 29. [Google Scholar]
- Beneyto, C.; Ángel, J.; Francés, F. Exploring the uncertainty of Weather Generators’ extreme estimates in different practical available information scenarios. Hydrol. Sci. J. 2023, 68, 1203–1212. [Google Scholar] [CrossRef]
- Beneyto, C.; Vignes, G.; Aranda, J.Á.; Francés, F. Sample Uncertainty Analysis of Daily Flood Quantiles Using a. Water 2023, 15, 3489. [Google Scholar] [CrossRef]
- Camarasa, A.M.; Segura, F. Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. CATENA 2001, 45, 229–249. [Google Scholar] [CrossRef]
- Herrera, S.; Kotlarski, S.; Soares, P.M.M.; Cardoso, R.M.; Jaczewski, A.; Gutiérrez, J.M.; Maraun, D. Uncertainty in gridded precipitation products: Influence of station density, interpolation method and grid resolution. Int. J. Climatol. 2019, 39, 3717–3729. [Google Scholar] [CrossRef]
- Kotlarski, S.; Szabó, P.; Herrera, S.; Räty, O.; Keuler, K.; Soares, P.M.; Cardoso, R.M.; Bosshard, T.; Pagé, C.; Boberg, F.; et al. Observational uncertainty and regional climate model evaluation: A pan-European perspective. Int. J. Climatol. 2017, 39, 3730–3749. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef]
- Hargreaves, G.; Samani, Z. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Haruna, A.; Blanchet, J.; Favre, A.C. Performance-based comparison of regionalization methods to improve the at-site estimates of daily precipitation. Hydrol. Earth Syst. Sci. 2022, 26, 2797–2811. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Some Statistics Useful in Regional Frequency Analys. Water Resour. Res. 1993, 29, 271–281. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: New York, NY, USA, 1997; p. 238. [Google Scholar]
- Dalrymple, T. Flood-Frequency Analyses. Manual of Hydrology Part 3. Flood-flow techniques. Usgpo 1960, 1543-A, 80. [Google Scholar]
- Akaike, H. On Entropy Maximization Principle. In Applications of Statistics; Krishnaiah, P.R., Ed.; North-Holland Publishing Co.: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Papastathopoulos, I.; Tawn, J.A. Extended generalised Pareto models for tail estimation. J. Stat. Plan. Inference 2013, 143, 131–143. [Google Scholar] [CrossRef]
- Naveau, P. Modeling jointly low, moderate, and heavy rainfall intensities without a threshold selection. Water Resour. Res. 2016, 52, 2753–2769. [Google Scholar] [CrossRef]
- Vélez, J.J.; López Unzu, F.; Puricelli, M.; Francés, F. Parameter extrapolation to ungauged basins with a hydrological distributed model in a regional framework. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 909–956. [Google Scholar] [CrossRef]
- Francés, F.; Vélez, J.I.; Vélez, J.J. Split-parameter structure for the automatic calibration of distributed hydrological models. J. Hydrol. 2007, 332, 226–240. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J. V River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Cunnane, C. Unbiased plotting positions—A review. J. Hydrol. 1978, 37, 205–222. [Google Scholar] [CrossRef]
- Boughton, W.; Droop, O. Continuous simulation for design flood estimation—A review. Environ. Model. Softw. 2003, 18, 309–318. [Google Scholar] [CrossRef]
- Mendoza, P.A.; McPhee, J.; Vargas, X. Uncertainty in flood forecasting: A distributed modeling approach in a sparse data catchment. Water Resour. Res. 2012, 48, W09532. [Google Scholar] [CrossRef]
- Sankarasubramanian, A.; Lall, U. Flood quantiles in a changing climate: Seasonal forecasts and causal relations. Water Resour. Res. 2003, 39, 1134. [Google Scholar] [CrossRef]
- Gu, L.; Yin, J.; Zhang, H.; Wang, H.M.; Yang, G.; Wu, X. On future flood magnitudes and estimation uncertainty across 151 catchments in mainland China. Int. J. Climatol. 2021, 41, E779–E800. [Google Scholar] [CrossRef]
- Moradkhani, H. Hydrologic remote sensing and land surface data assimilation. Sensors 2008, 8, 2986–3004. [Google Scholar] [CrossRef] [PubMed]
- Pumo, D.; Francipane, A.; Cannarozzo, M.; Antinoro, C.; Noto, L.V. Monthly Hydrological Indicators to Assess Possible Alterations on Rivers’ Flow Regime. Water Resour. Manag. 2018, 32, 3687–3706. [Google Scholar] [CrossRef]
- Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems. River Res. Appl. 2005, 21, 849–864. [Google Scholar] [CrossRef]
- Schneider, C.; Laizé, C.L.R.; Acreman, M.C.; Flörke, M. How will climate change modify river flow regimes in Europe? Hydrol. Earth Syst. Sci. 2013, 17, 325–339. [Google Scholar] [CrossRef]
- Devkota, L.P.; Gyawali, D.R. Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal. J. Hydrol. Reg. Stud. 2015, 4, 502–515. [Google Scholar] [CrossRef]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.J. Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Hartmann, D.L. Global Climate Models. In Global Physical Climatology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 325–360. [Google Scholar]
- Randall, D.A.; Wood, R.A.; Bony, S.; Colman, R.; Fichefet, T.; Fyfe, J.; Kattsov, V.; Pitman, A.; Shukla, J.; Srinivasan, J.; et al. Chapter 8: Climate Models and Their Evaluation. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; Available online: https://www.researchgate.net/publication/233421523_Climate_Models_and_Their_Evaluation (accessed on 2 December 2023).
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of climate models. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 741–866. [Google Scholar]
- Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A.; De Angelo, B.; Doherty, S.; Hayhoe, K.; Horton, R.; Kossin, J.P.; Taylor, P.C.; Waple, A.M.; et al. Executive summary. In Climate Science Special Report: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume 16, pp. 193–205. [Google Scholar]
- Zubaidi, S.L.; Kot, P.; Hashim, K.; Alkhaddar, R.; Abdellatif, M.; Muhsin, Y.R. Using LARS-WG model for prediction of temperature in Columbia City, USA. IOP Conf. Ser. Mater. Sci. Eng. 2019, 584, 012026. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J.; Farda, A. Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor. Appl. Climatol. 2018, 131, 1043–1054. [Google Scholar] [CrossRef]
- Prein, A.F.; Rasmussen, R.M.; Ikeda, K.; Liu, C.; Clark, M.P.; Holland, G.J. The future intensification of hourly precipitation extremes. Nat. Clim. Chang. 2017, 7, 48–52. [Google Scholar] [CrossRef]
- Wasko, C.; Nathan, R.; Stein, L.; O’Shea, D. Evidence of shorter more extreme rainfalls and increased flood variability under climate change. J. Hydrol. 2021, 603, 126994. [Google Scholar] [CrossRef]
- Willems, P.; Vrac, M. Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J. Hydrol. 2011, 402, 193–205. [Google Scholar] [CrossRef]
- Teuling, A.J.; De Badts, E.A.G.; Jansen, F.A.; Fuchs, R.; Buitink, J.; Van Dijke, A.J.H.; Sterling, S.M. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 2019, 23, 3631–3652. [Google Scholar] [CrossRef]
- Potter, W.D. Upper and lower frequency curves for peak rates of runoff. Eos Trans. Am. Geophys. Union 1958, 39, 100–105. [Google Scholar] [CrossRef]
- Francés, F. Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis. Stoch. Hydrol. Hydraul. 1998, 12, 267–283. [Google Scholar] [CrossRef]
Model | GCM | RCM | Institute |
---|---|---|---|
1 | MPI-M-MPI-ESM-LR | COSMO-crCLIM-v1-1 | CLMcom-ETH |
2 | CNRM-CERFACS-CNRM-CM5 | CCLM4-8-17 | CLMcom |
3 | CNRM-CERFACS-CNRM-CM5 | RACMO22E | KNMI |
4 | ICHEC-EC-EARTH | COSMO-crCLIM-v1-1 | CLMcom-ETH |
5 | ICHEC-EC-EARTH | RACMO22E | KNMI |
6 | IPSL-IPSL-CM5A-MR | RACMO22E | KNMI |
7 | MOHC-HadGEM2-ES | CCLM4-8-17 | CLMcom |
8 | MOHC-HadGEM2-ES | RACMO22E | KNMI |
9 | MPI-M-MPI-ESM-LR | CCLM4-8-17 | CLMcom |
10 | MPI-M-MPI-ESM-LR | KNMI-RACMO22E | KNMI |
11 | MPI-M-MPI-ESM-LR | REMO2009 | MPI-CSC |
12 | NCC-NorESM1-M | COSMO-crCLIM-v1-1 | CLMcom-ETH |
(°C) | Minimum Temperature | Maximum Temperature | ||
---|---|---|---|---|
Mid-TERM | Long-Term | Mid-Term | Long-Term | |
January | 2.43 | 2.55 | 2.25 | 2.25 |
February | 1.90 | 1.93 | 2.17 | 1.98 |
March | 2.41 | 2.61 | 2.27 | 2.56 |
April | 2.39 | 2.98 | 2.76 | 3.55 |
May | 1.34 | 2.61 | 1.51 | 3.08 |
June | 3.02 | 5.32 | 3.34 | 6.04 |
July | 2.04 | 5.04 | 1.80 | 5.11 |
August | 1.06 | 4.26 | 1.35 | 4.73 |
September | 0.41 | 3.19 | 0.34 | 3.18 |
October | 1.47 | 3.68 | 1.43 | 3.67 |
November | 2.71 | 4.28 | 2.73 | 4.18 |
December | 1.67 | 2.59 | 1.56 | 2.40 |
T (Years) | Observations | Mid-Term Projection | Long-Term Projection | ||
---|---|---|---|---|---|
5 | 80 | 4.3% | 83 | 12.8% | 90 |
10 | 99 | 6.0% | 105 | 16.7% | 116 |
25 | 125 | 8.4% | 136 | 18.6% | 148 |
50 | 145 | 11.5% | 162 | 19.3% | 173 |
75 | 158 | 13.5% | 179 | 19.7% | 189 |
100 | 167 | 14.4% | 191 | 19.4% | 199 |
T (Years) | Observed (m3/s) | Climate Projections (m3/s) | |||
---|---|---|---|---|---|
Mid-Term | Long-Term | ||||
5 | 20 | 12% | 22 | 8% | 21 |
10 | 38 | 12% | 43 | 16% | 44 |
25 | 68 | 22% | 83 | 33% | 91 |
50 | 101 | 38% | 140 | 54% | 155 |
75 | 130 | 48% | 192 | 56% | 202 |
100 | 147 | 53% | 225 | 58% | 232 |
Vall d’Alba | ||||||
T (Years) | Observed (m3/s) | Climate Projections (m3/s) | ||||
Mid-Term | Long-Term | |||||
5 | 12 | 11% | 14 | 10% | 13 | |
10 | 22 | 13% | 24 | 33% | 29 | |
25 | 39 | 21% | 47 | 64% | 64 | |
50 | 56 | 41% | 79 | 88% | 105 | |
75 | 69 | 49% | 103 | 86% | 130 | |
100 | 80 | 50% | 121 | 80% | 145 | |
Montlleó | ||||||
T (Years) | Observed (m3/s) | Climate Projections (m3/s) | ||||
Mid-Term | Long-Term | |||||
5 | 4 | 3% | 4 | 5% | 4 | |
10 | 6 | 7% | 6 | 42% | 8 | |
25 | 11 | 27% | 14 | 111% | 23 | |
50 | 17 | 57% | 27 | 137% | 40 | |
75 | 21 | 73% | 37 | 145% | 52 | |
100 | 28 | 77% | 49 | 130% | 64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beneyto, C.; Aranda, J.Á.; Francés, F. On the Use of Weather Generators for the Estimation of Low-Frequency Floods under a Changing Climate. Water 2024, 16, 1059. https://doi.org/10.3390/w16071059
Beneyto C, Aranda JÁ, Francés F. On the Use of Weather Generators for the Estimation of Low-Frequency Floods under a Changing Climate. Water. 2024; 16(7):1059. https://doi.org/10.3390/w16071059
Chicago/Turabian StyleBeneyto, Carles, José Ángel Aranda, and Félix Francés. 2024. "On the Use of Weather Generators for the Estimation of Low-Frequency Floods under a Changing Climate" Water 16, no. 7: 1059. https://doi.org/10.3390/w16071059
APA StyleBeneyto, C., Aranda, J. Á., & Francés, F. (2024). On the Use of Weather Generators for the Estimation of Low-Frequency Floods under a Changing Climate. Water, 16(7), 1059. https://doi.org/10.3390/w16071059