Evaluation of Climatological Precipitation Datasets and Their Hydrological Application in the Hablehroud Watershed, Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Hydrological Model
2.2.1. Sensitivity Analysis
2.2.2. Calibration Method
2.2.3. Input Data
Basic Data
Meteorological Datasets
- Precipitation
- Wind and Temperature
2.3. Evaluation Metrics
2.3.1. Evaluation of Climatological Data
2.3.2. Evaluation of Hydrological Performance of Climatological Data
3. Results and Discussion
3.1. Evaluation of Precipitation Forcing
3.2. Evaluation of Streamflow Simulations
3.2.1. Daily Result Evaluation
3.2.2. Monthly Result Evaluation
3.3. Sensitivity Analysis
4. Conclusions
- In the Hablehroud watershed, the APHRODITE precipitation dataset had better performance than the PERSIANN-CDR and ERA5-Land. This was due to the nature of this precipitation dataset, which is based on the interpolation of precipitation over ground stations. Although the ERA5-Land precipitation dataset had better accuracy in detecting rainfall events, it had a high deviation rate, which reached more than 200% in one case, making it rank third, and the PERSIANN-CDR precipitation dataset ranked second in terms of its performance.
- The VIC hydrological model of the northern Hablehroud watershed showed good performance in the runoff simulations at the daily and monthly scales using precipitation datasets from rain gauge stations operated by the Ministry of Energy. Also, the results showed that the APHRODITE and PERSIANN-CDR precipitation datasets had a similar performance, with interpolated observed precipitation data in the runoff simulation, despite the differences in their accuracy in precipitation estimation. The ERA5-Land precipitation data largely overestimated runoff estimation due to high deviation in precipitation estimation.
- Although the APHRODITE precipitation dataset had a better performance in estimating the amount of precipitation and also in detecting the actual rainfall, the PERSIANN-CDR performed better in simulating runoff in both the calibration and validation periods, on a daily scale. This result is similar to the result presented by Shayeghi et al. (2020), which showed that although the ERA-Interim reanalysis precipitation dataset is more accurate in estimating precipitation itself, the PERSIANN dataset performs better in estimating runoff [31]. Therefore, the superiority of a precipitation dataset compared to rain gauges cannot be the sole reason for the superiority of those data in runoff simulation, and their hydrological performance can be different.
- Based on the sensitivity analysis of the precipitation datasets, it can be concluded that not only did each of the precipitation datasets have different sensitivity values for their parameters, they also had varying numbers of sensitive parameters. It appears that the precipitation dataset with higher errors had more sensitive parameters, and in order to achieve better calibration results, more parameters of a model may need to be adjusted. However, the results showed that even a precipitation dataset with a lower accuracy may still provide acceptable results in simulating runoff.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gemechu, T.M.; Zhao, H.; Bao, S.; Yangzong, C.; Liu, Y.; Li, F.; Li, H. Estimation of hydrological components under current and future climate scenarios in guder catchment, upper Abbay Basin, Ethiopia, using the swat. Sustainability 2021, 13, 9689. [Google Scholar] [CrossRef]
- Zhao, Q.; Tan, X.; Zeng, Q.; Zhao, H.; Wu, J.-W.; Huang, J.-S. Combined effects of temperature and precipitation on the spring runoff generation process in a seasonal freezing agricultural watershed. Environ. Earth Sci. 2021, 80, 490. [Google Scholar] [CrossRef]
- Meyer Oliveira, A.; Fleischmann, A.; Cauduro Dias de Paiva, R. On the contribution of remote sensing-based calibration to model hydrological and hydraulic processes in tropical regions. J. Hydrol. 2021, 597, 126184. [Google Scholar] [CrossRef]
- Abdi, D.; Ayenew, T. Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia. Ecol. Process. 2021, 10, 41. [Google Scholar] [CrossRef]
- Li, M.; Di, Z.; Duan, Q. Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China. J. Hydrol. 2021, 603, 126896. [Google Scholar] [CrossRef]
- Zhang, Y.; Ju, Q.; Zhang, L.; Xu, C.-Y.; Lai, X. Evaluation and hydrological application of four gridded precipitation datasets over a large Southeastern Tibetan Plateau Basin. Remote Sens. 2022, 14, 2936. [Google Scholar] [CrossRef]
- Fallah, A.; Rakhshandehroo, G.R.; Berg, P.; O, S.; Orth, R. Evaluation of precipitation datasets against local observations in southwestern Iran. Int. J. Climatol. 2020, 40, 4102–4116. [Google Scholar] [CrossRef]
- Zhu, B.; Xie, X.; Lu, C.; Lei, T.; Wang, Y.; Jia, K.; Yao, Y. Extensive evaluation of a continental-scale high-resolution hydrological model using remote sensing and ground-based observations. Remote Sens. 2021, 13, 1247. [Google Scholar] [CrossRef]
- Xu, R.; Tian, F.; Yang, L.; Hu, H.; Lu, H.; Hou, A. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gauge network. J. Geophys. Res. Atmos. 2017, 122, 910–924. [Google Scholar] [CrossRef]
- Mosaffa, H.; Sadeghi, M.; Hayatbini, N.; Afzali Gorooh, V.; Akbari Asanjan, A.; Nguyen, P.; Sorooshian, S. Spatiotemporal Variations of Precipitation over Iran Using the High-Resolution and Nearly Four Decades Satellite-Based PERSIANN-CDR Dataset. Remote Sens. 2020, 12, 1584. [Google Scholar] [CrossRef]
- Salmani-Dehaghi, N.; Samani, N. Development of bias-correction PERSIANN-CDR models for the simulation and completion of precipitation time series. Atmos. Environ. 2021, 246, 117981. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- He, Z.; Yang, L.; Tian, F.; Ni, G.; Hou, A.; Lu, H. Intercomparisons of rainfall estimates from TRMM and GPM multisatellite products over the Upper Mekong River Basin. J. Hydrometeorol. 2017, 18, 413–430. [Google Scholar] [CrossRef]
- He, Z.; Hu, H.; Tian, F.; Ni, G.; Hu, Q. Correcting the TRMM rainfall product for hydrological modelling in sparsely-gauged mountainous basins. Hydrol. Sci. J. 2017, 62, 306–318. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Neto, R.M.B.; do Nascimento, T.V.M.; da Silva, R.M.; Mishra, M.; Frade, T.G. Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Sci. Total Environ. 2021, 750, 141258. [Google Scholar] [CrossRef]
- Alijanian, M.; Rakhshandehroo, G.R.; Mishra, A.; Dehghani, M. Evaluation of remotely sensed precipitation estimates using PERSIANN-CDR and MSWEP for spatio-temporal drought assessment over Iran. J. Hydrol. 2019, 579, 124189. [Google Scholar] [CrossRef]
- Yang, N.; Yu, H.; Lu, Y.; Zhang, Y.; Zheng, Y. Evaluating the Applicability of PERSIANN-CDR Products in Drought Monitoring: A Case Study of Long-Term Droughts over Huaihe River Basin, China. Remote Sens. 2022, 14, 4460. [Google Scholar] [CrossRef]
- Sobral, B.S.; de Oliveira-Júnior, J.F.; Alecrim, F.; Gois, G.; Muniz-Júnior, J.G.; de Bodas Terassi, P.M.; Pereira-Júnior, E.R.; Lyra, G.B.; Zeri, M. PERSIANN-CDR based characterization and trend analysis of annual rainfall in Rio De Janeiro State, Brazil. Atmos. Res. 2020, 238, 104873. [Google Scholar] [CrossRef]
- Arvor, D.; Funatsu, B.; Michot, V.; Dubreuil, V. Monitoring Rainfall Patterns in the Southern Amazon with PERSIANN-CDR Data: Long-Term Characteristics and Trends. Remote Sens. 2017, 9, 889. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Khare, D.; Arora, M. Evaluation of reanalysis and global meteorological products in Beas river basin of North-Western Himalaya. Environ. Syst. Res. 2020, 9, 24. [Google Scholar] [CrossRef]
- Tang, G.; Clark, M.P.; Papalexiou, S.M.; Newman, A.J.; Wood, A.W.; Brunet, D.; Whitfield, P.H. EMDNA: An Ensemble Meteorological Dataset for North America. Earth Syst. Sci. Data 2021, 13, 3337–3362. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Yang, K.; Liao, H.; Zhang, S.; Huang, K.; Lv, Y.; Shao, J.; Yu, T.; Tong, B. Investigation of near-global daytime boundary layer height using high-resolution radiosondes: First results and comparison with ERA-5, MERRA-2, JRA-55, and NCEP-2 reanalyses. Atmos. Chem. Phys. Discuss. 2021, 21, 17079–17097. [Google Scholar] [CrossRef]
- Dullaart, J.C.M.; Muis, S.; Bloemendaal, N.; Aerts, J.C.J.H. Advancing global storm surge modelling using the new ERA5 climate reanalysis. Clim. Dyn. 2020, 54, 1007–1021. [Google Scholar] [CrossRef]
- Harrigan, S.; Zsoter, E.; Alfieri, L.; Prudhomme, C.; Salamon, P.; Wetterhall, F.; Barnard, C.; Cloke, H.; Pappenberger, F. GloFAS-ERA5 operational global river discharge reanalysis 1979–present. Earth Syst. Sci. Data 2020, 12, 2043–2060. [Google Scholar] [CrossRef]
- Lee, S.; Lee, S.-J.; Jang, K.; Chun, J.-H. Drought Monitoring Based on Vegetation Type and Reanalysis Data in Korea. Atmosphere 2021, 12, 170. [Google Scholar] [CrossRef]
- Tsering, K.; Shrestha, M.; Shakya, K.; Bajracharya, B.; Matin, M.; Lozano, J.L.S.; Nelson, J.; Wangchuk, T.; Parajuli, B.; Bhuyan, M.A. Verification of two hydrological models for real-time flood forecasting in the Hindu Kush Himalaya (HKH) region. Nat. Hazards 2021, 110, 1821–1845. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, S.; Ren, L.; Wang, M.; Zhang, L.; Liu, Y.; Yuan, F.; Yang, X. Evaluation of seventeen satellite-, reanalysis-, and gauge-based precipitation products for drought monitoring across mainland China. Atmos. Res. 2021, 263, 105813. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Cracknell, A.P. Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water 2017, 9, 229. [Google Scholar] [CrossRef]
- Ajaaj, A.A.; Mishra, A.K.; Khan, A.A. Evaluation of Satellite and Gauge-Based Precipitation Products through Hydrologic Simulation in Tigris River Basin under Data-Scarce Environment. J. Hydrol. Eng. 2019, 24, 05018033. [Google Scholar] [CrossRef]
- Wedyan, A.; Whalley, J.; Narayanan, A. Hydrological cycle algorithm for continuous optimization problems. J. Optim. 2017, 2017, 3828420. [Google Scholar] [CrossRef]
- Braga, R.C.; Rosenfeld, D.; Krüger, O.O.; Ervens, B.; Holanda, B.A.; Wendisch, M.; Krisna, T.; Pöschl, U.; Andreae, M.O.; Voigt, C.; et al. Linear relationship between effective radius and precipitation water content near the top of convective clouds: Measurement results from ACRIDICON–CHUVA campaign. Atmos. Chem. Phys. 2021, 21, 14079–14088. [Google Scholar] [CrossRef]
- Shayeghi, A.; Azizian, A.; Brocca, L. Reliability of reanalysis and remotely sensed precipitation products for hydrological simulation over the Sefidrood River Basin, Iran. Hydrol. Sci. J. 2020, 65, 296–310. [Google Scholar] [CrossRef]
- Adam, J.C.; Lettenmaier, D.P. Adjustment of global gridded precipitation for systematic bias. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Lin, X.; Hubbard, K.G. Sensor and Electronic Biases/Errors in Air Temperature Measurements in Common Weather Station Networks. J. Atmos. Ocean. Technol. 2004, 21, 1025–1032. [Google Scholar] [CrossRef]
- Scaff, L.; Yang, D.; Li, Y.; Mekis, E. Inconsistency in precipitation measurements across the Alaska–Yukon border. Cryosphere 2015, 9, 2417–2428. [Google Scholar] [CrossRef]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; Van Dijk, A.I.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci. 2017, 21, 6201–6217. [Google Scholar] [CrossRef]
- Strauch, M.; Bernhofer, C.; Koide, S.; Volk, M.; Lorz, C.; Makeschin, F. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. J. Hydrol. 2012, 414, 413–424. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Sheridan, S.C.; Lee, C.C.; Smith, E.T. A comparison between station observations and reanalysis data in the identification of extreme temperature events. Geophys. Res. Lett. 2020, 47, e2020GL088120. [Google Scholar] [CrossRef]
- Fan, W.; Liu, Y.; Chappell, A.; Dong, L.; Xu, R.; Ekström, M.; Fu, T.-M.; Zeng, Z. Evaluation of global reanalysis land surface wind speed trends to support wind energy development using in situ observations. J. Appl. Meteorol. Climatol. 2021, 60, 33–50. [Google Scholar] [CrossRef]
- Seyed Ali, S.; Rahimi, m.; Dastourani, J.; Khosroshahi, M. Trend Analysis of Hydroclimatological Parameters and Detection of Manageral Changes in Water Resources Conditions of Hablerood Watershed. Iran. J. Range Desert Res. 2016, 23, 555–566. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Gao, H.; Tang, Q.; Shi, X.; Zhu, C.; Bohn, T.; Su, F.; Pan, M.; Sheffield, J.; Lettenmaier, D.; Wood, E. Water Budget Record from Variable Infiltration Capacity (VIC) Model. 2010. Available online: https://www.researchgate.net/profile/John-Xiaogang-Shi/publication/268367169_Water_Budget_Record_from_Variable_Infiltration_Capacity_VIC_Model/links/55715dee08aee701d61cc286/Water-Budget-Record-from-Variable-Infiltration-Capacity-VIC-Model.pdf (accessed on 27 March 2024).
- Lohmann, D.; Nolte-Holube, R.; Raschke, E. A large-scale horizontal routing model to be coupled to land surface parametrization schemes. Tellus A 1996, 48, 708–721. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model. J. Geophys. Res. Atmos. 1996, 101, 21403–21422. [Google Scholar] [CrossRef]
- Wagener, T.; Boyle, D.P.; Lees, M.J.; Wheater, H.S.; Gupta, H.V.; Sorooshian, S. A framework for development and application of hydrological models. Hydrol. Earth Syst. Sci. 2001, 5, 13–26. [Google Scholar] [CrossRef]
- Foglia, L.; Hill, M.C.; Mehl, S.W.; Burlando, P. Sensitivity analysis, calibration, and testing of a distributed hydrological model using error-based weighting and one objective function. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Zhang, C.; Chu, J.; Fu, G. Sobol′s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China. J. Hydrol. 2013, 480, 58–68. [Google Scholar] [CrossRef]
- Stein, M. Large sample properties of simulations using Latin hypercube sampling. Technometrics 1987, 29, 143–151. [Google Scholar] [CrossRef]
- Liu, H.; Clark, M.P.; Gharari, S.; Sheikholeslami, R.; Freer, J.; Knoben, W.J.; Papalexiou, S.M. pyVISCOUS: An open-source tool for computationally frugal global sensitivity analysis. Authorea Prepr. 2022. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Banikhedmat, A.; Salehi, H.; Golian, S.; Koohian Afzal, F.; Ezati Boorestan, N. Evaluation of the impact of non-aligned objective functions in multi-objective calibration of SWAT hydrological model, case study: Qarasu watershed, Kermanshah. Watershed Eng. Manag. 2023, 15, 639–654. [Google Scholar]
- Vu, D.T.; Dang, T.D.; Pianosi, F.; Galelli, S. Calibrating macro-scale hydrological models in poorly gauged and heavily regulated basins. Hydrol. Earth Syst. Sci. Discuss. 2023, 27, 3485–3504. [Google Scholar] [CrossRef]
- Yeste, P.; Melsen, L.A.; García-Valdecasas Ojeda, M.; Gámiz-Fortis, S.R.; Castro-Díez, Y.; Esteban-Parra, M.J. A Pareto-based sensitivity analysis and multi-objective calibration approach for integrating streamflow and evaporation data. Water Resour. Res. 2023, 59, e2022WR033235. [Google Scholar] [CrossRef]
- Dang, T.D.; Chowdhury, A.; Galelli, S. On the representation of water reservoir storage and operations in large-scale hydrological models: Implications on model parameterization and climate change impact assessments. Hydrol. Earth Syst. Sci. 2020, 24, 397–416. [Google Scholar] [CrossRef]
- Nachtergaele, F.; Velthuizen, H.; Verelst, L.; Wiberg, D. Harmonized World Soil Database (HWSD). Food Agric. Organ. U. N. Rome 2009. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ aqua land cover type yearly L3 global 500m SIN grid V006. NASA EOSDIS Land Process. DAAC 2019, 10, 200. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Longo-Minnolo, G.; Vanella, D.; Consoli, S.; Pappalardo, S.; Ramírez-Cuesta, J.M. Assessing the use of ERA5-Land reanalysis and spatial interpolation methods for retrieving precipitation estimates at basin scale. Atmos. Res. 2022, 271, 106131. [Google Scholar] [CrossRef]
- Khouni, I.; Louhichi, G.; Ghrabi, A. Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [Google Scholar] [CrossRef]
- Crespi, A.; Matiu, M.; Bertoldi, G.; Petitta, M.; Zebisch, M. A high-resolution gridded dataset of daily temperature and precipitation records (1980–2018) for Trentino-South Tyrol (north-eastern Italian Alps). Earth Syst. Sci. Data 2021, 13, 2801–2818. [Google Scholar] [CrossRef]
- Javari, M. Comparison of interpolation methods for modeling spatial variations of Precipitation in Iran. Comp. Interpolat. Methods Model. Spat. Var. Precip. Iran 2017, 12, 1037–1054. [Google Scholar]
- Gong, G.; Mattevada, S.; O’Bryant, S.E. Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas. Environ. Res. 2014, 130, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Borges, P.d.A.; Franke, J.; da Anunciação, Y.M.T.; Weiss, H.; Bernhofer, C. Comparison of spatial interpolation methods for the estimation of precipitation distribution in Distrito Federal, Brazil. Theor. Appl. Climatol. 2016, 123, 335–348. [Google Scholar] [CrossRef]
- Di Piazza, A.; Conti, F.L.; Noto, L.V.; Viola, F.; La Loggia, G. Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for Sicily, Italy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 396–408. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D. GPCP Version 2 Combined Precipitation Data Set Documentation. 2007. Available online: https://iridl.ldeo.columbia.edu/documentation/NASA/GPCP/V2p2/V2.2_doc.pdf (accessed on 1 November 2015).
- Ghajarnia, N.; Akbari, M.; Saemian, P.; Ehsani, M.R.; Hosseini-Moghari, S.M.; Azizian, A.; Kalantari, Z.; Behrangi, A.; Tourian, M.J.; Klöve, B. Evaluating the evolution of ECMWF precipitation products using observational data for Iran: From ERA40 to ERA5. Earth Space Sci. 2022, 9, e2022EA002352. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Schulzweida, U.; Kornblueh, L.; Quast, R. CDO user’s guide. Clim. Data Oper. Version 2006, 1, 205–209. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Song, L.; Xu, C.; Long, Y.; Lei, X.; Suo, N.; Cao, L. Performance of Seven Gridded Precipitation Products over Arid Central Asia and Subregions. Remote Sens. 2022, 14, 6039. [Google Scholar] [CrossRef]
- Santra Mitra, S.; Santra, A.; Kumar, A. Catchment specific evaluation of Aphrodite’s and TRMM derived gridded precipitation data products for predicting runoff in a semi gauged watershed of Tropical India. Geocarto Int. 2021, 36, 1292–1308. [Google Scholar] [CrossRef]
- Ang, R.; Kinouchi, T.; Zhao, W. Evaluation of daily gridded meteorological datasets for hydrological modeling in data-sparse basins of the largest lake in Southeast Asia. J. Hydrol. Reg. Stud. 2022, 42, 101135. [Google Scholar] [CrossRef]
- Lei, H.; Li, H.; Zhao, H.; Ao, T.; Li, X. Comprehensive evaluation of satellite and reanalysis precipitation products over the eastern Tibetan plateau characterized by a high diversity of topographies. Atmos. Res. 2021, 259, 105661. [Google Scholar] [CrossRef]
- Wang, W.; Sun, L.; Cai, Y.; Yi, Y.; Yang, W.; Yang, Z. Evaluation of multi-source precipitation data in a watershed with complex topography based on distributed hydrological modeling. River Res. Appl. 2021, 37, 1115–1133. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew, M.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Jahanshahi, A.; Roshun, S.H.; Booij, M.J. Comparison of satellite-based and reanalysis precipitation products for hydrological modeling over a data-scarce region. Clim. Dyn. 2024. [Google Scholar] [CrossRef]
- Ougahi, J.H.; Mahmood, S.A. Evaluation of satellite-based and reanalysis precipitation datasets by hydrologic simulation in the Chenab river basin. J. Water Clim. Change 2022, 13, 1563–1582. [Google Scholar] [CrossRef]
- Usman, M.; Ndehedehe, C.E.; Ahmad, B.; Manzanas, R.; Adeyeri, O.E. Modeling streamflow using multiple precipitation products in a topographically complex catchment. Model. Earth Syst. Environ. 2022, 8, 1875–1885. [Google Scholar] [CrossRef]
Description | Unit | Range | |
---|---|---|---|
Binf | Variable infiltration curve parameter | N/A | 0–0.4 |
Ds | Fraction of Dsmax where non-linear baseflow begins | Fraction | 0–1 |
Dsmax | Maximum velocity of baseflow | mm/day | 0–30 |
Ws | Fraction of maximum soil moisture where non-linear baseflow occurs | N/A | 0–1 |
C | Exponent used in baseflow curve, normally set to 2 | Fraction | 1–4 |
D1 | Thickness of soil moisture of first layer | m | 0.05–0.25 |
D2 | Thickness of soil moisture of second layer | m | 0.25–2.5 |
D3 | Thickness of soil moisture of third layer | m | 0.25–2.5 |
Website | Spatial Coverage | Temporal Coverage | Spatial Resolution | Temporal Resolution | Dataset |
---|---|---|---|---|---|
CHRS Data Portal | Global | 1983–present | 0.25° × 0.25° | Daily, Monthly, Yearly | PERSIANN-CDR |
Copernicus Climate Data Store | Global | 1950–present | 9 km × 9 km | Hourly, Monthly | ERA5-Land |
APHRODITE homepage | Asia | 1951–2007 | 0.25° × 0.25° | Daily | APHRODITE |
ERA5-Land | PERSIANN-CDR | APHRODITE | |||||||
---|---|---|---|---|---|---|---|---|---|
Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Index |
0.59 | 0.41 | 0.10 | 0.33 | 0.24 | 0.09 | 0.78 | 0.54 | 0.18 | CC |
208.3 | 66.90 | 12.48 | 76.29 | 19.58 | −12.49 | 30.11 | −0.49 | −16.29 | PBIAS |
0.54 | 0.05 | −1.26 | 0.32 | 0.18 | −0.11 | 0.65 | 0.40 | 0.05 | KGE |
0.89 | 0.82 | 0.76 | 0.62 | 0.51 | 0.42 | 0.96 | 0.85 | 0.75 | POD |
0.87 | 0.73 | 0.57 | 0.85 | 0.69 | 0.53 | 0.83 | 0.67 | 0.47 | FAR |
0.38 | 0.25 | 0.13 | 0.33 | 0.23 | 0.13 | 0.48 | 0.31 | 0.16 | CSI |
6.06 | 3.63 | 1.79 | 3.53 | 1.86 | 1.12 | 4.65 | 2.97 | 1.56 | FBI |
0.41 | 0.22 | 0.03 | 0.35 | 0.25 | 0.14 | 0.54 | 0.33 | 0.10 | HSS |
1992–1994 (Calibration) | ||||||
α | β | CC | KGE | RMSE | NSE | |
Observation | 0.93 | 0.90 | 0.81 | 0.78 | 3.40 | 0.64 |
APHRODITE | 0.98 | 0.74 | 0.72 | 0.62 | 3.95 | 0.52 |
PERSIANN-CDR | 1.01 | 0.73 | 0.76 | 0.64 | 3.64 | 0.59 |
ERA5-Land | 0.9 | 0.67 | 0.64 | 0.5 | 4.36 | 0.41 |
1995–1996 (Validation) | ||||||
α | β | CC | KGE | RMSE | NSE | |
Observation | 0.93 | 0.92 | 0.79 | 0.76 | 3.30 | 0.59 |
APHRODITE | 1.08 | 1.03 | 0.77 | 0.75 | 3.62 | 0.50 |
PERSIANN-CDR | 1.05 | 1.14 | 0.83 | 0.77 | 3.42 | 0.56 |
ERA5-Land | 1.24 | 0.93 | 0.78 | 0.66 | 4.64 | 0.18 |
1992–1994 (Calibration) | ||||||
α | β | CC | KGE | RMSE | NSE | |
Observation | 0.93 | 0.99 | 0.87 | 0.86 | 2.42 | 0.73 |
APHRODITE | 0.98 | 0.81 | 0.78 | 0.71 | 2.93 | 0.61 |
PERSIANN-CDR | 1.01 | 0.82 | 0.83 | 0.76 | 2.61 | 0.69 |
ERA5-Land | 0.90 | 0.74 | 0.70 | 0.59 | 3.46 | 0.46 |
1995–1996 (Validation) | ||||||
α | β | CC | KGE | RMSE | NSE | |
Observation | 0.93 | 0.98 | 0.84 | 0.83 | 2.53 | 0.72 |
APHRODITE | 1.08 | 1.10 | 0.83 | 0.79 | 2.84 | 0.60 |
PERSIANN-CDR | 1.05 | 1.20 | 0.90 | 0.77 | 2.36 | 0.68 |
ERA5-Land | 1.24 | 0.97 | 0.86 | 0.72 | 3.10 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, H.; Gharechelou, S.; Golian, S.; Ranjbari, M.; Ghazi, B. Evaluation of Climatological Precipitation Datasets and Their Hydrological Application in the Hablehroud Watershed, Iran. Water 2024, 16, 1028. https://doi.org/10.3390/w16071028
Salehi H, Gharechelou S, Golian S, Ranjbari M, Ghazi B. Evaluation of Climatological Precipitation Datasets and Their Hydrological Application in the Hablehroud Watershed, Iran. Water. 2024; 16(7):1028. https://doi.org/10.3390/w16071028
Chicago/Turabian StyleSalehi, Hossein, Saeid Gharechelou, Saeed Golian, Mohammadreza Ranjbari, and Babak Ghazi. 2024. "Evaluation of Climatological Precipitation Datasets and Their Hydrological Application in the Hablehroud Watershed, Iran" Water 16, no. 7: 1028. https://doi.org/10.3390/w16071028
APA StyleSalehi, H., Gharechelou, S., Golian, S., Ranjbari, M., & Ghazi, B. (2024). Evaluation of Climatological Precipitation Datasets and Their Hydrological Application in the Hablehroud Watershed, Iran. Water, 16(7), 1028. https://doi.org/10.3390/w16071028