Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index
Abstract
:1. Introduction
2. Research Methodology and Data Sources
2.1. Calculation of SPEI
2.2. Mann–Kendall Nonparametric Tests
2.3. Wavelet Analysis
2.4. Drought Assessment Methodologies
2.5. Data Sources
3. Results
3.1. Time-Varying Characteristics of SPEI
3.2. Drought Abrupt Change Test and Drought Cycle Characteristics
3.2.1. Drought Abrupt Change Test
3.2.2. Annual and Seasonal Cycle Characteristics
3.3. Spatial Differentiation Characteristics of SPEI-12
3.3.1. Overall Spatial Distribution Pattern of SPEI across Different Decades
3.3.2. Trends in SPEI in Seven Geographic Regions
3.3.3. Change in Average Annual SPEI in 31 Provinces
3.4. Drought Intensity and Station Ratio in Each Year
3.4.1. Drought Intensity
3.4.2. Drought Station Percentage
4. Discussion
5. Conclusions
- (1)
- Both drought frequency and drought intensity in China have fluctuated between 1961 to 2021, with a decreasing trend in the SPEI at different timescales between the 1960s and 1970s and a more pronounced upward trend in the SPEI at different timescales since the 2010s. Overall, the SPEI-1, SPEI-3, and SPEI-12 demonstrated that drought intensity gradually decreased at rates of 0.005 per decade, 0.021 per decade, and 0.092 per decade, respectively.
- (2)
- In the past 61 years, there has been a shift in areas with high drought intensity in China: northwest China → central southwest China → central China → northeast China → southwest China; each province generally experienced a downward trend in drought intensity over the 61 years. The number of provinces experiencing drought has been significantly reduced, with most provinces showing a wetting trend.
- (3)
- From 1961 to 2021, abrupt changes from dry to wet conditions in China occurred in 1989. The duration of the annual dry and wet cycle is 29–35 years, and the duration of seasonal dry and wet cycle is 30–32 years; the oscillatory cycles of dry and wet changes essentially have the same time scale.
- (4)
- Over the past 61 years, the drought intensity in China has shown fluctuations but has generally exhibited a decreasing trend, with the most significant decline observed in extreme drought events. The percentage of stations experiencing some level of drought has also shown a downward trend, although the percentage of stations experiencing mild drought has remained relatively stable. The variations in the percentage of stations experiencing severe and extreme drought are noticeable. In recent 61 years, the drought severity in China has gradually weakened, indicating an overall trend towards a more humid climate.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amnuaylojaroen, T.; Chanvichit, P. Projection of near-future climate change and agricultural drought in Mainland Southeast Asia under RCP8.5. Clim. Chang. 2019, 155, 175–193. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earths Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Dai, A.G. Erratum: Drought under global warming: A review. Wiley Interdiscip. Rev.-Clim. Chang. 2012, 3, 617. [Google Scholar] [CrossRef]
- WHO. Report on Drought and Countries Affected by Drought during 1974–1985; WHO: Geneva, Switzerland, 1986. [Google Scholar]
- Gringof, I.G.M.E.; Sinha Ray, K.C.; Spasov, P. Impacts of Desertification and Drought and Other Extreme Meteorological Events; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Si, R.J.; Wen, J.H.; Yin, Z.E. Emergency Events Database (EM-DAT) and Its Applications. Sci. Technol. Rev. 2007, 25, 60–67. [Google Scholar]
- Stefanidis, S.; Rossiou, D.; Proutsos, N. Drought Severity and Trends in a Mediterranean Oak Forest. Hydrology 2023, 10, 167. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, N. Vulnerability assessment of urban agglomerations to the risk of heat waves in China since the 21st century. Environ. Pollut. 2023, 336, 122443. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Zhang, Q.H.; Zou, T.; Lin, J.P.; Kong, H.; Ren, Z.H. Climatology of Hail Frequency and Size in China, 1980-2015. J. Appl. Meteorol. Climatol. 2018, 57, 875–887. [Google Scholar] [CrossRef]
- Tang, H.; Wen, T.; Shi, P.; Qu, S.M.; Zhao, L.L.; Li, Q.F. Analysis of Characteristics of Hydrological and Meteorological Drought Evolution in Southwest China. Water 2021, 13, 1846. [Google Scholar] [CrossRef]
- Huang, S.Z.; Chang, J.X.; Huang, Q.; Chen, Y.T. Spatio-temporal Changes and Frequency Analysis of Drought in the Wei River Basin, China. Water Resour. Manag. 2014, 28, 3095–3110. [Google Scholar] [CrossRef]
- Xin, X.G.; Yu, R.C.; Zhou, T.J.; Wang, B. Drought in late spring of South China in recent decades. J. Clim. 2006, 19, 3197–3206. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Q.; Zhu, X.; Shen, Z.; Yu, H. Quantitative assessment of drought risk in China. Acta Ecol. Sin. 2021, 41, 1021–1031. [Google Scholar]
- Merabti, A.; Darouich, H.; Paredes, P.; Meddi, M.; Pereira, L.S. Assessing Spatial Variability and Trends of Droughts in Eastern Algeria Using SPI, RDI, PDSI, and MedPDSI-A Novel Drought Index Using the FAO56 Evapotranspiration Method. Water 2023, 15, 626. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Zhou, P.; Jin, J.L.; Wu, C.G.; Cui, Y.; Zhang, Y.L.; Tong, F. Drought identification based on Palmer drought severity index and return period analysis of drought characteristics in Huaibei Plain China. Environ. Res. 2022, 212, 113163. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.F.; Ma, Z.H.; Yan, N.N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Lee, C.; Seo, J.; Won, J.; Kim, S. Optimal Probability Distribution and Applicable Minimum Time-Scale for Daily Standardized Precipitation Index Time Series in South Korea. Atmosphere 2023, 14, 1292. [Google Scholar] [CrossRef]
- Paulo, A.; Martins, D.; Pereira, L.S. Influence of Precipitation Changes on the SPI and Related Drought Severity. An Analysis Using Long-Term Data Series. Water Resour. Manag. 2016, 30, 5737–5757. [Google Scholar] [CrossRef]
- Khoshnazar, A.; Perez, G.C.A.; Mercado, V.D.; Aminzadeh, M.; Pineda, R.A.C. Wet-environment Evapotranspiration and Precipitation Standardized Index (WEPSI) for drought assessment and monitoring. Hydrol. Res. 2022, 53, 1393–1413. [Google Scholar] [CrossRef]
- Pei, Z.F.; Fang, S.B.; Wang, L.; Yang, W.N. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Liao, Y.; Zhang, C. Spatio-Temporal Distribution Characteristics and Disaster Change of Drought in China Based on Meteorological Drought Composite Index. Meteorol. Mon. 2017, 43, 1402–1409. [Google Scholar]
- Hu, Z.; Zhou, J.; Zhang, L.; Wei, W.; Cao, J. Climate dry-wet change and drought evolution characteristics of different dry-wet areas in northern China. Acta Ecol. Sin. 2018, 38, 1908–1919. [Google Scholar]
- Zhang, J.; Sun, F.B.; Xu, J.J.; Chen, Y.N.; Sang, Y.F.; Liu, C.M. Dependence of trends in and sensitivity of drought over China (1961–2013) on potential evaporation model. Geophys. Res. Lett. 2016, 43, 206–213. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Wei, W.; Liu, T.; Zhou, L.; Wang, J.P.; Yan, P.; Xie, B.B.; Zhou, J.J. Drought-Related Spatiotemporal Cumulative and Time-Lag Effects on Terrestrial Vegetation across China. Remote Sens. 2023, 15, 4362. [Google Scholar] [CrossRef]
- Li, L.C.; She, D.X.; Zheng, H.; Lin, P.R.; Yang, Z.L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Wu, M.J.; Li, Y.; Hu, W.; Yao, N.; Li, L.C.; Liu, D.L. Spatiotemporal variability of standardized precipitation evapotranspiration index in mainland China over 1961–2016. Int. J. Climatol. 2020, 40, 4781–4799. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H.; Demirel, M.C. A comparative assessment of projected meteorological and hydrological droughts: Elucidating the role of temperature. J. Hydrol. 2017, 553, 785–797. [Google Scholar] [CrossRef]
- Wang, Y.F.; Liu, G.X.; Guo, E.L. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901-2014 using Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, M. Investigation into drought evolution characteristics of China in 60 years. J. Arid Land Resour. Environ. 2015, 29, 177–183. [Google Scholar]
- Mehr, A.D.; Sorman, A.U.; Kahya, E.; Afshar, M.H. Climate change impacts on meteorological drought using SPI and SPEI: Case study of Ankara, Turkey. Hydrol. Sci. J.-J. Des Sci. Hydrol. 2020, 65, 254–268. [Google Scholar] [CrossRef]
- GB/T 20481-2017; Meteorological Drought Level. China Meteorological Administration: Beijing, China, 2017.
- Wang, W.; Zhu, Y.; Xu, R.G.; Liu, J.T. Drought severity change in China during 1961–2012 indicated by SPI and SPEI. Nat. Hazards 2015, 75, 2437–2451. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Chen, Y.; Lei, T.; Li, J. Self-Calibrating Palmer Drought Severity Index-based analysis on spatial and temporal characteristics of drought from 1961 to 2015 in China. Water Resour. Hydropower Eng. 2019, 50, 43–51. [Google Scholar]
- Kiem, A.S.; Vance, T.R.; Tozer, C.R.; Roberts, J.L.; Pozza, R.D.; Vitkovsky, J.; Smolders, K.; Curran, M.A.J. Learning from the past—Using palaeoclimate data to better understand and manage drought in South East Queensland (SEQ), Australia. J. Hydrol. Reg. Stud. 2020, 29, 100686. [Google Scholar] [CrossRef]
- Zhai, J.Q.; Mondal, S.K.; Fischer, T.; Wang, Y.J.; Su, B.D.; Huang, J.L.; Tao, H.; Wang, G.J.; Ullah, W.; Uddin, M.J. Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmos. Res. 2020, 246, 105111. [Google Scholar] [CrossRef]
- Deo, R.C.; Sahin, M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmos. Res. 2015, 153, 512–525. [Google Scholar] [CrossRef]
- Zhang, L.X.; Chen, Z.M.; Zhou, T.J. Human Influence on the Increasing Drought Risk over Southeast Asian Monsoon Region. Geophys. Res. Lett. 2021, 48, e2021GL093777. [Google Scholar] [CrossRef]
- Kim, J.E.; Yoo, J.; Chung, G.H.; Kim, T.W. Hydrologic Risk Assessment of Future Extreme Drought in South Korea Using Bivariate Frequency Analysis. Water 2019, 11, 2052. [Google Scholar] [CrossRef]
- Hao, Z.C.; Hao, F.H.; Singh, V.P.; Ouyang, W. Quantitative risk assessment of the effects of drought on extreme temperature in eastern China. J. Geophys. Res.-Atmos. 2017, 122, 9050–9059. [Google Scholar] [CrossRef]
- Dikshit, A.; Pradhan, B.; Alamri, A.M. Temporal Hydrological Drought Index Forecasting for New South Wales, Australia Using Machine Learning Approaches. Atmosphere 2020, 11, 585. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.Y.; Kim, J.S.; Sur, C.; Chen, J. Extreme drought hotspot analysis for adaptation to a changing climate: Assessment of applicability to the five major river basins of the Korean Peninsula. Int. J. Climatol. 2018, 38, 4025–4032. [Google Scholar] [CrossRef]
- Tian, F.; Wu, J.J.; Liu, L.Z.; Leng, S.; Yang, J.H.; Zhao, W.H.; Shen, Q. Exceptional Drought across Southeastern Australia Caused by Extreme Lack of Precipitation and Its Impacts on NDVI and SIF in 2018. Remote Sens. 2020, 12, 54. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, C.; Li, Y.; Feng, J.; Wang, J. Analysis of Multi-timescale Drought Variation based on Standardized Precipitation Index in China during 19602011. J. Desert Res. 2014, 34, 827–834. [Google Scholar]
- Ye, L.; Shi, K.; Zhang, H.R.; Xin, Z.H.; Hu, J.; Zhang, C. Spatio-Temporal Analysis of Drought Indicated by SPEI over Northeastern China. Water 2019, 11, 908. [Google Scholar] [CrossRef]
- Rahmati, O.; Panahi, M.; Kalantari, Z.; Soltani, E.; Falah, F.; Dayal, K.S.; Mohammadi, F.; Deo, R.C.; Tiefenbacher, J.; Bui, D.T. Capability and robustness of novel hybridized models used for drought hazard modeling in southeast Queensland, Australia. Sci. Total Environ. 2020, 718, 134656. [Google Scholar] [CrossRef]
- Wang, R.N.; Peng, W.Q.; Liu, X.B.; Wu, W.Q.; Chen, X.K.; Zhang, S.J. Responses of Water Level in China’s Largest Freshwater Lake to the Meteorological Drought Index (SPEI) in the Past Five Decades. Water 2018, 10, 137. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.H.; Fraedrich, K.; Sielmann, F.; Zhi, X.F. Interdecadal variability of winter precipitation in Southeast China. Clim. Dyn. 2014, 43, 2239–2248. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, B.; Ma, B.; Wei, H.; Zhang, J.; Ma, S. Drought evolution characteristics on the Tibetan Plateau based on daily standardized precipitation evapotranspiration index. J. Glaciol. Geocryol. 2018, 40, 1100–1109. [Google Scholar]
- Wu, X.; Duan, C.; Mayila, M.; Zhang, J.; Zhang, T. Analysis of the temporal-spatial variation characteristics of drought in the Xinjiang based on the meteorological drought comprehensive index. Arid Zone Res. 2022, 39, 75–83. [Google Scholar]
- Li, L.; Yan, D.; Qin, T.; Hao, C.; Zheng, X. Drought variation in Haihe river basin from 1961 to 2010. J. Arid Land Resour. Environ. 2012, 26, 61–67. [Google Scholar]
- Gao, G.; Li, Y.; Chen, Y.X.; Feng, A.Q. The evolution characteristics of drought spatio-temporal law in China in the recent 30 years. China Flood Drought Manag. 2023, 33, 2023192. [Google Scholar] [CrossRef]
- Wang, C.; Si, J.; Zhao, C.; Li, P.; Zhang, J. Analysis of Temporal and Spatial Evolution Characteristics of Drought Disasters in the Hexi Corridor in Recent 57 Years. Plateau Meteorol. 2019, 38, 196–205. [Google Scholar]
- Phelps, D.; Kelly, D. Overcoming drought vulnerability in rangeland communities: Lessons from central-western Queensland. Rangel. J. 2019, 41, 251–270. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; England, M.H.; McIntosh, P.C.; Meyers, G.A.; Pook, M.J.; Risbey, J.S.; Gupta, A.S.; Taschetto, A.S. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Mpelasoka, F.; Hennessy, K.; Jones, R.; Bates, B. Comparison of suitable drought indices for climate change impacts assessment over Australia towards resource management. Int. J. Climatol. 2008, 28, 1283–1292. [Google Scholar] [CrossRef]
- Zhou, T.J.; Zhang, W.X.; Zhang, L.X.; Zhang, X.B.; Qian, Y.; Peng, D.D.; Ma, S.M.; Dong, B.W. The dynamic and thermodynamic processes dominating the reduction of global land monsoon precipitation driven by anthropogenic aerosols emission. Sci. China-Earth Sci. 2020, 63, 919–933. [Google Scholar] [CrossRef]
- Mills, M.; Mutafoglu, K.; Adams, V.M.; Archibald, C.; Bell, J.; Leon, J.X. Perceived and projected flood risk and adaptation in coastal Southeast Queensland, Australia. Clim. Chang. 2016, 136, 523–537. [Google Scholar] [CrossRef]
- Rahman, M.R.; Lateh, H. Meteorological drought in Bangladesh: Assessing, analysing and hazard mapping using SPI, GIS and monthly rainfall data. Environ. Earth Sci. 2016, 75, 1026. [Google Scholar] [CrossRef]
- Chen, H.; Fan, L.; Wu, W.; Liu, H.B. Comparison of spatial interpolation methods for soil moisture and its application for monitoring drought. Environ. Monit. Assess. 2017, 189, 525. [Google Scholar] [CrossRef]
Level | Type | SPEI |
---|---|---|
1 | no drought | SPEI > −0.5 |
2 | mild drought | −1.0 < SPEI ≤ −0.5 |
3 | moderate drought | −1.5 < SPEI ≤ −1.0 |
4 | severe drought | −2.0 < SPEI ≤ −1.5 |
5 | extreme drought | SPEI ≤ −2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Dai, E.; Yin, J.; Jia, L.; Zhang, P.; Sun, J. Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 1012. https://doi.org/10.3390/w16071012
Yang Y, Dai E, Yin J, Jia L, Zhang P, Sun J. Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water. 2024; 16(7):1012. https://doi.org/10.3390/w16071012
Chicago/Turabian StyleYang, Yunrui, Erfu Dai, Jun Yin, Lizhi Jia, Peng Zhang, and Jianguo Sun. 2024. "Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index" Water 16, no. 7: 1012. https://doi.org/10.3390/w16071012
APA StyleYang, Y., Dai, E., Yin, J., Jia, L., Zhang, P., & Sun, J. (2024). Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water, 16(7), 1012. https://doi.org/10.3390/w16071012