Adapting Water Resources Management to Climate Change in Water-Stressed River Basins—Júcar River Basin Case
Abstract
:Highlights
- Highly stressed basins will experience increased water scarcity under climate change.
- Water scarcity indices are easy and quick to use for analysing water resource systems’ sustainability.
- The methodology allows to define measures to adapt river basin management to climate change.
- Increasing reclaimed water use from 20% to 50%, irrigation efficiency up to 80%, desalination, and interconnection are the main measures.
- One of the main measures is to start to move water from downstream to upstream, from the coast to inland, using renewable energy.
Abstract
1. Introduction
2. Methodology and Case Study
2.1. Case Study
2.2. Methodology
3. Results and Discussion
3.1. Current Water Scarcity Indices
3.2. Effect of Climate Change on Water Scarcity Indices
3.3. Measures to Adapt Mediterranean River Basins to Climate Change
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Z.; Yuan, X.; Liu, X. The key drivers for the changes in global water scarcity: Water withdrawal versus water availability. J. Hydrol. 2021, 601, 126658, ISSN 0022-1694. [Google Scholar] [CrossRef]
- Falkenmark, M.; Lundqvist, J.; Widstrand, C. Macro-scale water scarcity requires micro-scale approaches. Nat. Resour. Forum 1989, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Alcamo, J.; Henrichs, T.; Rösch, T. World Water in 2025-Global Modeling and Scenario Analysis for the World Commission on Water for the 21st Century; Kassel World Water Series; University of Kassel: Kassel, Germany, 2000. [Google Scholar]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrol. Sci. J. 2003, 48, 339–348. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water scarcity assessments in the past, present, and future. Earth’s Futur. 2017, 5, 545–559. [Google Scholar] [CrossRef] [PubMed]
- Raskin, P.D.; Hansen, E.; Margolis, R.M. Water and sustainability. Nat. Resour. Forum 1996, 20, 1–15. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.K.; Aldaya, M.M.; Mekonnen, M.M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan: London, UK; Washington, DC, USA, 2011. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). FAO and UN Water Progress on Level of Water Stress. Global Status and Acceleration Needs for SDG Indicator 6.4.2; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2021; ISBN 9789251348260. [Google Scholar]
- Damkjaer, S.; Taylor, R. The measurement of water scarcity: Defining a meaningful indicator. AMBIO 2017, 46, 513–531. [Google Scholar] [CrossRef] [PubMed]
- Vanham, D.; Hoekstra, A.Y.; Wada, Y.; Bouraoui, F.; De Roo, A.; Mekonnen, M.M.; Van De Bund, W.J.; Batelaan, O.; Pavelic, P.; Bastiaanssen, W.G.M.; et al. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”. Sci. Total Environ. 2018, 613–614, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Fitton, N.; Alexander, P.; Arnell, N.; Bajzelj, B.; Calvin, K.; Doelman, J.; Gerber, J.; Havlik, P.; Hasegawa, T.; Herrero, M.; et al. The vulnerabilities of agricultural land and food production to future water scarcity. Glob. Environ. Chang. 2019, 58, 101944, ISSN 0959-3780. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Gosling, S.N.; Arnell, N.W. A global assessment of the impact of climate change on water scarcity. Clim. Chang. 2016, 134, 371–385. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J.; et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, M.I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol. Earth Syst. Sci. 2014, 18, 2859–2883. [Google Scholar] [CrossRef]
- Estrela, T.; Pérez-Martin, M.A.; Vargas, E. Impacts of climate change on water resources in Spain. Hydrol. Sci. J. 2012, 57, 1154–1167. [Google Scholar] [CrossRef]
- Savenije, H. Water scarcity indicators; the deception of the numbers. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 199–204. [Google Scholar] [CrossRef]
- Pedro-Monzonís, M.; Solera, A.; Ferrer, J.; Estrela, T.; Paredes-Arquiola, J. A review of water scarcity and drought indexes in water resources planning and management. J. Hydrol. 2015, 527, 482–493. [Google Scholar] [CrossRef]
- European Commission (EC); Margat, J.; Detoc, S.; Carmi, N.; Iglesias, A.; Khalifa, E.; Gabina, D.; Davy, T.; Blinda, M.; Tagar, Z.; et al. Mediterranean Water Scarcity and Drought Report–Technical Report on Water Scarcity and Drought Management in the Mediterranean and the Water Framework Directive; Directorate-General for Environment; European Commission: Brussels, Belgium, 2011.
- Rijsberman, F.R. Water scarcity: Fact or fiction? Agric. Water Manag. 2006, 80, 5–22. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M.; Karlberg, L.; Hoff, H.; Rost, S.; Gerten, D. Future water availability for global food production: The potential of green water for increasing resilience to global change. Water Resour. Res. 2009, 45, W00A12. [Google Scholar] [CrossRef]
- Casadei, S.; Peppoloni, F.; Pierleoni, A. A New Approach to Calculate the Water Exploitation Index (WEI+). Water 2020, 12, 3227. [Google Scholar] [CrossRef]
- Dolan, F.; Lamontagne, J.; Link, R.; Hejazi, M.; Reed, P.; Edmonds, J. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun. 2021, 12, 1915. [Google Scholar] [CrossRef]
- Filho, W.L.; Totin, E.; Franke, J.A.; Andrew, S.M.; Abubakar, I.R.; Azadi, H.; Nunn, P.D.; Ouweneel, B.; Williams, P.A.; Simpson, N.P. Understanding responses to climate-related water scarcity in Africa. Sci. Total Environ. 2021, 806, 150420. [Google Scholar] [CrossRef]
- Andreu, J.; Capilla, J.; Sanchis, E. AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J. Hydrol. 1996, 177, 269–291. [Google Scholar] [CrossRef]
- CEDEX. Evaluation of the Impact of Climate Change on Water Resources and Droughts in Spain; CEDEX Hydrographic Studies Center: Madrid, Spain, 2017. [Google Scholar]
- Estrela-Segrelles, C.; Gómez-Martinez, G.; Pérez-Martín, M.Á. Risk assessment of climate change impacts on Mediterranean coastal wetlands. Application in Júcar River Basin District (Spain). Sci. Total Environ. 2021, 790, 148032. [Google Scholar] [CrossRef]
- Estrela-Segrelles, C.; Gómez-Martínez, G.; Pérez-Martín, M.Á. Climate Change Risks on Mediterranean River Ecosystems and Adaptation Measures (Spain). Water Resour. Manag. 2023, 37, 2757–2770. [Google Scholar] [CrossRef]
- FAO. IMI-SDG6-Integrated Monitoring Initiative for SDG 6–Step-by-Step Monitoring Methodology for SDG Indicator 6.4.1. 2019. Available online: www.fao.org/3/ca8484en/ca8484en.pdf (accessed on 13 August 2021).
- Pérez-Martín, M.A.; Estrela, T.; Andreu, J.; Ferrer, J. Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain. Water Resour. Manag. 2014, 28, 4337–4358. [Google Scholar] [CrossRef]
- Pérez-Martín, M.A.; Estrela, T.; Del-Amo, P. Measures required to reach the nitrate objectives in groundwater based on a long-term nitrate model for large river basins (Júcar, Spain). Sci. Total Environ. 2016, 566–567, 122–133. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar] [CrossRef]
- CEDEX. Incorporation of Climate Change to Third Cycle Hydrological Plans; Nota. 26 de octubre; CEDEX Hydrographic Studies Center: Madrid, Spain, 2020. [Google Scholar]
- CHJ. Júcar River Basin Management Plan; Júcar River Basin Authority: Cuenca, Spain, 2021. [Google Scholar]
- BOE-A-2008-15340; Order ARM/2656/2008, of September 10, Approving the Hydrological Planning Instruction. Spanish Environmental Ministry: Madrid, Spain, 2008.
- Martínez-Medina, M.A. Methodological Proposal for Estimating Irrigation Water Needs in Hydrological Planning: Ap-plication in the Júcar River Basin District. Master’s Thesis, Polytechnical University of Valencia, Valencia, Spain, 2021. [Google Scholar]
- MITECO. Ministry for the Ecological Transition and the Demographic Challenge, Spain. 2024. Available online: https://escenarios.adaptecca.es/ (accessed on 10 March 2024).
- Ortega-Gómez, T.; Pérez-Martín, M.A.; Estrela, T. Improvement of the drought indicators system in the Júcar River Basin, Spain. Sci. Total Environ. 2018, 610–611, 276–290. [Google Scholar] [CrossRef]
- Urquijo, J.; De Stefano, L. Perception of Drought and Local Responses by Farmers: A Perspective from the Jucar River Basin, Spain. Water Resour. Manag. 2016, 30, 577–591. [Google Scholar] [CrossRef]
- Rubio-Martin, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.; Garcia-Prats, A. System Dynamics Modeling for Supporting Drought-Oriented Management of the Jucar River System, Spain. Water 2020, 12, 1407. [Google Scholar] [CrossRef]
- Wheeler, S.; Carmody, E.; Grafton, R.; Kingsford, R.; Zuo, A. The rebound effect on water extraction from subsidising irrigation infrastructure in Australia. Resour. Conserv. Recycl. 2020, 159, 104755. [Google Scholar] [CrossRef]
- Pérez-Martín, M.Á.; Arora, M.; Estrela, T. Defining the Maximum Nitrogen Surplus in Water Management Plans to Recover Nitrate Polluted Aquifers in Spain. J. Environ. Manag. 2024, 356, 120770. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martín, M.Á.; Benedito-Castillo, S. Fertigation to recover nitrate-polluted aquifer and improve a long time eutrophicated lake, Spain. Sci. Total Environ. 2023, 894, 165020. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martín, M.Á. Understanding Nutrient Loads from Catchment and Eutrophication in a Salt Lagoon: The Mar Menor Case. Water 2023, 15, 3569. [Google Scholar] [CrossRef]
- Martínez, G.G.; Martín, M.Á.P. Water Management Adaptation to Climate Change in Mediterranean Semiarid Regions by Desalination and Photovoltaic Solar Energy, Spain. Water 2023, 15, 3239. [Google Scholar] [CrossRef]
Level | CTA | WTA | FAO UN6.4.2/WEI |
---|---|---|---|
No stress | <0.20 | <0.25 | <0.25 |
Low | 0.20–0.30 | 0.25–0.50 | 0.25–0.50 |
Medium | 0.30–0.40 | 0.50–0.75 | 0.50–0.75 |
High | 0.40–0.70 | 0.75–1.25 | 0.75–1.00 |
Critical | >0.70 | >1.25 | >1.00 |
Components | 1CM | 2MP | 3PV | 4TU | 5JU | 6SE | 7MA | 8MB | 9VA | JRBD |
---|---|---|---|---|---|---|---|---|---|---|
Renewable resources (hm3/year) | 231.3 | 417.1 | 89.1 | 422.4 | 1409.6 | 202.2 | 230.2 | 69.6 | 93.8 | 3165.3 |
Reclaimed water (hm3/year) (1) | 0.5 | 2.6 | 0.1 | 44.7 | 3.7 | 2.6 | 1.3 | 8.3 | 27.6 | 91.4 |
Seawater desalination (hm3/year) | 7.5 | 1.8 | 7.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 13.6 | 30.0 |
Transfer input (hm3/year) | 0.0 | 0.0 | 0.0 | 0.0 | 5.0 | 0.0 | 0.0 | 0.0 | 71.2 | 76.2 |
Total water resources (hm3/year) (AWR) | 239.3 | 421.5 | 96.3 | 467.1 | 1418.3 | 204.8 | 231.5 | 77.9 | 206.2 | 3362.9 |
Wastewater (hm3) (2) | 15.4 | 37.6 | 9.9 | 177.4 | 89.4 | 28.0 | 15.8 | 21.4 | 56.4 | 451.2 |
Ratio of reclaimed/treated wastewater (1)/(2) | 0.03 | 0.07 | 0.01 | 0.25 | 0.04 | 0.09 | 0.08 | 0.39 | 0.49 | 0.20 |
Urban net abstraction (hm3/year) | 3.5 | 9.3 | 1.0 | 16.4 | 37.6 | 5.0 | 6.2 | 4.7 | 17.6 | 101.3 |
Industrial net abstraction (hm3/year) | 0.7 | 5.4 | 0.7 | 8.8 | 28.2 | 1.8 | 0.9 | 1.4 | 8.8 | 56.6 |
Agricultural net abstraction (hm3/year) | 54.5 | 106.1 | 39.9 | 175.8 | 735.9 | 44.9 | 33.7 | 13.7 | 94.1 | 1298.5 |
Total net abstraction (hm3/year) (NA) | 58.7 | 120.8 | 41.5 | 201.1 | 801.8 | 51.7 | 40.7 | 19.7 | 120.5 | 1456.4 |
CTA Index = NA/AWR | 0.25 | 0.29 | 0.43 | 0.43 | 0.57 | 0.25 | 0.18 | 0.25 | 0.58 | 0.43 |
Urban gross derivation (hm3/year) | 17.7 | 46.4 | 4.9 | 82.2 | 188.1 | 25.1 | 30.8 | 23.3 | 88.0 | 506.4 |
Industrial gross derivation (hm3/year) | 2.1 | 21.7 | 3.4 | 40.4 | 56.7 | 8.4 | 1.9 | 2.0 | 36.3 | 172.8 |
Agricultural gross derivation (hm3/year) | 88.9 | 176.0 | 74.3 | 433.9 | 1364.4 | 80.9 | 52.0 | 25.1 | 127.2 | 2422.7 |
Total gross abstraction (hm3/year) (GA) | 108.6 | 244.2 | 82.6 | 556.5 | 1609.1 | 114.4 | 84.6 | 50.3 | 251.6 | 3101.9 |
WTA Index = GA/AWR | 0.45 | 0.58 | 0.86 | 1.19 | 1.13 | 0.56 | 0.37 | 0.65 | 1.22 | 0.92 |
Transfer output (hm3/year) (3) | 15.0 | 15.0 | ||||||||
Not derived resources (hm3/year) (4) = AWR-NA-(3) | 180.6 | 300.7 | 54.8 | 266.1 | 601.5 | 153.1 | 190.8 | 58.2 | 85.7 | 1891.4 |
Environmental requirements (hm3/year) (ER) | 114.9 | 37.5 | 12.7 | 31.5 | 131.2 | 45.7 | 58.0 | 15.3 | 23.3 | 470.1 |
Ratio = (4)/ER | 1.6 | 8.0 | 4.3 | 8.4 | 4.6 | 3.4 | 3.3 | 3.8 | 3.7 | 4.0 |
WEI+ = NA/(AWR-ER) | 0.47 | 0.31 | 0.50 | 0.46 | 0.62 | 0.32 | 0.23 | 0.31 | 0.66 | 0.50 |
FAO UN6.4.2/WEI = GA/(AWR-ER) | 0.87 | 0.64 | 0.99 | 1.28 | 1.25 | 0.72 | 0.49 | 0.80 | 1.38 | 1.07 |
Water Resource System | Treated Water, hm3 | Reclaimed Water, hm3 | Reclaimed Water, hm3 | Desalinated Water, hm3 | Desalinated Water, hm3 | Irrigation Efficiency | Irrigation Efficiency | External Inputs, hm3 | External Inputs, hm3 |
---|---|---|---|---|---|---|---|---|---|
Current | Current | Future | Current | Future | Current | Future | Current | Future | |
1CM Cenia-Maestrazgo | 15.4 | 0.5 | 7.5 | 7.5 | 7.5 | 61% | 80% | ||
2MP Mijares-Plana de Castellón | 37.6 | 2.6 | 12.7 | 1.8 | 10.9 | 60% | 80% | ||
3PV Palancia-Los Valles | 9.9 | 0.1 | 1.0 | 7.1 | 8.4 | 54% | 80% | ||
4TU Turia | 177.4 | 44.7 | 47.9 | 0.0 | 0.0 | 41% | 80% | ||
5JU Júcar | 89.4 | 3.7 | 71.9 | 0.0 | 0.0 | 54% | 75% | 5.0 | 5.0 |
6SE Sérpis | 28.0 | 2.6 | 7.0 | 0.0 | 0.0 | 55% | 80% | ||
7MA Marina Alta | 15.8 | 1.3 | 10.2 | 0.0 | 0.0 | 65% | 80% | ||
8MB Marina Baja | 21.4 | 8.3 | 13.0 | 0.0 | 0.0 | 55% | 80% | ||
9VA Vinalopó-Alacantí | 56.4 | 27.6 | 52.4 | 13.6 | 18.3 | 74% | 90% | 71.2 | 90.3 |
JRBD | 451.2 | 91.4 | 223.6 | 30.0 | 55.2 | 54% | 78% | 76.2 | 95.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estrela-Segrelles, C.; Pérez-Martín, M.Á.; Wang, Q.J. Adapting Water Resources Management to Climate Change in Water-Stressed River Basins—Júcar River Basin Case. Water 2024, 16, 1004. https://doi.org/10.3390/w16071004
Estrela-Segrelles C, Pérez-Martín MÁ, Wang QJ. Adapting Water Resources Management to Climate Change in Water-Stressed River Basins—Júcar River Basin Case. Water. 2024; 16(7):1004. https://doi.org/10.3390/w16071004
Chicago/Turabian StyleEstrela-Segrelles, Clara, Miguel Ángel Pérez-Martín, and Quan J. Wang. 2024. "Adapting Water Resources Management to Climate Change in Water-Stressed River Basins—Júcar River Basin Case" Water 16, no. 7: 1004. https://doi.org/10.3390/w16071004
APA StyleEstrela-Segrelles, C., Pérez-Martín, M. Á., & Wang, Q. J. (2024). Adapting Water Resources Management to Climate Change in Water-Stressed River Basins—Júcar River Basin Case. Water, 16(7), 1004. https://doi.org/10.3390/w16071004