Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Information
2.3. Spatial and Environmental Factors
2.4. Data Analysis
3. Results
3.1. Macroinvertebrate Community Composition
3.2. Species- and Phylogenetic Diversity-Area Relationships
3.3. β-Diversity Values
3.4. Key Drivers of Beta Diversity and Its Components
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef]
- Leibold, M.A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J.M.; Hoopes, M.F.; Holt, R.D.; Shurin, J.B.; Law, R.; Tilman, D.; et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 2004, 7, 601–613. [Google Scholar] [CrossRef]
- Arrhenius, O. Species and area. J. Ecol. 1921, 9, 95–99. [Google Scholar] [CrossRef]
- Moradi, H.; Fattorini, S.; Oldeland, J. Influence of elevation on the species-area relationship. J. Biogeogr. 2020, 47, 2029–2041. [Google Scholar] [CrossRef]
- Tittensor, D.P.; Micheli, F.; Nyström, M.; Worm, B. Human impacts on the species-area relationship reef fish assemblages. Ecol. Lett. 2007, 10, 760–772. [Google Scholar] [CrossRef]
- Li, D.J.; Monahan, W.B.; Baiser, B. Species richness and phylogenetic diversity of native and non-native species respond differently to area and environmental factors. Divers. Distrib. 2018, 24, 853–864. [Google Scholar] [CrossRef]
- Dias, R.A.; Bastazini, V.A.G.; Knopp, B.D.; Bonow, F.C.; Gonçalves, M.S.S.; Gianuca, A.T. Species richness and patterns of overdispersion, clustering and randomness shape phylogenetic and functional diversity-area relationships in habitat islands. J. Biogeogr. 2020, 47, 1638–1648. [Google Scholar] [CrossRef]
- Li, F.; Tonkin, J.D.; Haase, P. Dispersal capacity and broad-scale landscape structure shape benthic invertebrate communities along stream networks. Limnologica 2018, 71, 68–74. [Google Scholar] [CrossRef]
- Leclerc, C.; Magneville, C.; Bellard, C. Conservation hotspots of insular endemic mammalian diversity at risk of extinction across a multidimensional approach. Divers. Distrib. 2022, 28, 2754–2764. [Google Scholar] [CrossRef]
- Karadimou, E.K.; Kallimanis, A.S.; Tsiripidis, I.; Dimopoulos, P. Functional diversity exhibits a diverse relationship with area, even a decreasing one. Sci. Rep. 2016, 6, 35420. [Google Scholar] [CrossRef]
- Helmus, M.R.; Ives, A.R. Phylogenetic diversity-area curves. Ecology 2012, 93, S31–S43. [Google Scholar] [CrossRef]
- Warwick, R.M.; Clarke, K.R. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar. Ecol. Prog. Ser. 1995, 129, 301–305. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 1998, 35, 523–531. [Google Scholar] [CrossRef]
- Matthews, T.J.; Rigal, F.; Kougioumoutzis, K.; Trigas, P.; Triantis, K.A. Unravelling the small-island effect through phylogenetic community ecology. J. Biogeogr. 2020, 47, 2341–2352. [Google Scholar] [CrossRef]
- Matthews, T.J.; Wayman, J.P.; Whittaker, R.J.; Cardoso, P.; Hume, J.P.; Sayol, F.; Proios, K.; Martin, T.E.; Baiser, B.; Borges, P.A.V.; et al. A global analysis of avian island diversity-area relationships in the Anthropocene. Ecol. Lett. 2023, 26, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Mazel, F.; Guilhaumon, F.; Mouquet, N.; Devictor, V.; Gravel, D.; Renaud, J.; Cianciaruso, M.V.; Loyola, R.; Felizola Diniz-Filho, J.A.; Mouillot, D.; et al. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity. Glob. Ecol. Biogeogr. 2014, 23, 836–847. [Google Scholar] [CrossRef]
- Matthews, T.J.; Rigal, F.; Triantis, K.A.; Whittaker, R.J. A global model of island species-area relationships. Proc. Natl. Acad. Sci. USA 2019, 116, 12337–12342. [Google Scholar] [CrossRef] [PubMed]
- Passy, S.I.; Mruzek, J.L.; Budnick, W.R.; Leboucher, T.; Jamoneau, A.; Chase, J.M.; Soininen, J.; Sokol, E.R.; Tison-Rosebery, J.; Vilmi, A.; et al. On the shape and origins of the freshwater species-area relationship. Ecology 2023, 104, e3917. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.W.; Pan, Y.J.; Bodegom, P.M.V.; Cieraad, E.; Xing, D.L.; Yang, Y.Y.; Xia, T.Y.; Luo, X.Y.; Song, K.; Da, L.; et al. Beta diversity of urban spontaneous plants and its drivers in 9 major cities of Yunnan province, China. Landsc. Urban. Plan. 2023, 234, 104741. [Google Scholar] [CrossRef]
- Harte, J.; Kinzig, A.P. On the implications of species-area relationships for endemism, spatial turnover, and food web patterns. Oikos 1997, 80, 417–427. [Google Scholar] [CrossRef]
- Sizling, A.L.; Kunin, W.E.; Sizlingová, E.; Reif, J.; Storch, D. Between Geometry and Biology: The Problem of Universality of the Species-Area Relationship. Am. Nat. 2011, 178, 602–611. [Google Scholar] [CrossRef]
- Polyakova, M.A.; Dembicz, I.; Becker, T.; Becker, U.; Demina, O.N.; Ermakov, N.; Filibeck, G.; Guarino, R.; Janisová, M.; Jaunatre, R.; et al. Scale- and taxon-dependent patterns of plant diversity in steppes of Khakassia, South Siberia (Russia). Biodivers. Conserv. 2016, 25, 2251–2273. [Google Scholar] [CrossRef]
- Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 2010, 33, 23–45. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Qian, H.; Ricklefs, R.E.; White, P.S. Beta diversity of angiosperms in temperate floras of eastern Asia and eastern North America. Ecol. Lett. 2005, 8, 15–22. [Google Scholar] [CrossRef]
- Wright, D.H.; Reeves, J.H. On the Meaning and Measurement of Nestedness of Species Assemblages. Oecologia 1992, 92, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Ofiteru, I.D.; Lunn, M.; Curtis, T.P.; Wells, G.F.; Criddle, C.S.; Francis, C.A.; Sloan, W.T. Combined niche and neutral effects in a microbial wastewater treatment community. Proc. Natl. Acad. Sci. USA 2010, 107, 15345–15350. [Google Scholar] [CrossRef]
- Hanski, I.; Hanski, I. Metapopulation Ecology; Oxford University Press: Oxford, MA, USA, 1999. [Google Scholar]
- Nekola, J.C.; White, P.S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 1999, 26, 867–878. [Google Scholar] [CrossRef]
- Keil, P.; Schweiger, O.; Kühn, I.; Kunin, W.E.; Kuussaari, M.; Settele, J.; Henle, K.; Brotons, L.; Pe’er, G.; Lengyel, S.; et al. Patterns of beta diversity in Europe: The role of climate, land cover and distance across scales. J. Biogeogr. 2012, 39, 1473–1486. [Google Scholar] [CrossRef]
- Lomolino, M.V. Ecology’s most general, yet protean pattern: The species-area relationship. J. Biogeogr. 2000, 27, 17–26. [Google Scholar] [CrossRef]
- Triantis, K.A.; Guilhaumon, F.; Whittaker, R.J. The island species-area relationship: Biology and statistics. J. Biogeogr. 2012, 39, 215–231. [Google Scholar] [CrossRef]
- Turner, W.R.; Tjorve, E. Scale-dependence in species-area relationships. Ecography 2005, 28, 721–730. [Google Scholar] [CrossRef]
- Battes, K.P.; Cîmpean, M.; Momeu, L.; Suteu, A.M.; Pauliuc, G.; Stermin, A.N.; David, A. Species-area relationships for aquatic biota in several shallow lakes from the Fizes Valley (Transylvania, Romania). North-West. J. Zool. 2019, 15, 117–126. [Google Scholar]
- Mancinelli, G.; Mali, S.; Belmonte, G. Species Richness and Taxonomic Distinctness of Zooplankton in Ponds and Small Lakes from Albania and North Macedonia: The Role of Bioclimatic Factors. Water 2019, 11, 2384. [Google Scholar] [CrossRef]
- Herceg-Szórádi, Z.; Demeter, L.; Csergo, A.M. Small area and low connectivity constrain the diversity of plant life strategies in temporary ponds. Divers. Distrib. 2023, 29, 629–640. [Google Scholar] [CrossRef]
- Maltchik, L.; Lanes, L.E.K.; Stenert, C.; Medeiros, E.S.F. Species-area relationship and environmental predictors of fish communities in coastal freshwater wetlands of southern Brazil. Environ. Biol. Fish. 2010, 88, 25–35. [Google Scholar] [CrossRef]
- Carl, L.M.; Esselman, P.C.; Sparks-Jackson, B.L.; Wilson, C.C. The species-area relationship for a highly fragmented temperate river system. Ecosphere 2021, 12, e03411. [Google Scholar] [CrossRef]
- Tickner, D.; Opperman, J.J.; Abell, R.; Acreman, M.; Arthington, A.H.; Bunn, S.E.; Cooke, S.J.; Dalton, J.; Darwall, W.; Edwards, G.; et al. Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan. Bioscience 2020, 70, 330–342. [Google Scholar] [CrossRef]
- Covich, A.P.; Palmer, M.A.; Crowl, T.A. The role of benthic invertebrate species in freshwater ecosystems—Zoobenthic species influence energy flows and nutrient cycling. Bioscience 1999, 49, 119–127. [Google Scholar] [CrossRef]
- Haase, P.; Bowler, D.E.; Baker, N.J.; Bonada, N.; Domisch, S.; Marquez, J.G.R.; Heino, J.; Hering, D.; Jähnig, S.C.; Schmidt-Kloiber, A.; et al. The recovery of European freshwater biodiversity has come to a halt. Nature 2023, 620, 582–588. [Google Scholar] [CrossRef]
- Albini, D.; Lester, L.; Sanders, P.; Hughes, J.; Jackson, M.C. The combined effects of treated sewage discharge and land use on rivers. Glob. Chang. Biol. 2023, 29, 6415–6422. [Google Scholar] [CrossRef]
- Rumschlag, S.L.; Mahon, M.B.; Jones, D.K.; Battaglin, W.; Behrens, J.; Bernhardt, E.S.; Bradley, P.; Brown, E.; De Laender, F.; Hill, R.; et al. Density declines, richness increases, and composition shifts in stream macroinvertebrates. Sci. Adv. 2023, 9, eadf4896. [Google Scholar] [CrossRef]
- Chiu, M.C.; Ao, S.C.; Resh, V.H.; He, F.Z.; Cai, Q.H. Species dispersal along rivers and streams may have variable importance to metapopulation structure. Sci. Total Environ. 2021, 760, 144045. [Google Scholar] [CrossRef]
- Godínez-Domínguez, E.; Freire, J.; Franco-Gordo, C.; González-Sansón, G. Decomposing diversity patterns of a soft-bottom macroinvertebrate community in the tropical eastern Pacific. J. Mar. Biol. Assoc. U. K. 2009, 89, 31–38. [Google Scholar] [CrossRef]
- Feio, M.J.; Hughes, R.M.; Serra, S.R.Q.; Nichols, S.J.; Kefford, B.; Lintermans, M.; Robinson, W.; Odume, O.N.; Callisto, M.; Macedo, D.R.; et al. Fish and macroinvertebrate assemblages reveal extensive degradation of the world’s rivers. Glob. Chang. Biol. 2023, 29, 355–374. [Google Scholar] [CrossRef]
- Chen, F.; Wang, H.Q.; Yuan, Y.J. Two centuries of temperature variation and volcanic forcing reconstructed for the northern Tibetan Plateau. Phys. Geogr. 2017, 38, 248–262. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Guo, Y.Q.; Xu, H.M.; Ganjurjav, H.; Li, Y.; Wan, Y.F.; Qin, X.B.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554, 34–41. [Google Scholar] [CrossRef]
- Li, Z.; Xing, Y.; Liu, Z.; Chen, X.; Jiang, X.; Xie, Z.; Heino, J. Seasonal changes in metacommunity assembly mechanisms of benthic macroinvertebrates in a subtropical river basin. Sci. Total Environ. 2020, 729, 139046. [Google Scholar] [CrossRef]
- Liu, C.; Dudley, K.L.; Xu, Z.H.; Economo, E.P. Mountain metacommunities: Climate and spatial connectivity shape ant diversity in a complex landscape. Ecography 2018, 41, 101–112. [Google Scholar] [CrossRef]
- Qin, C.; Ge, Y.; Gao, J.; Zhou, S.; Yu, J.; Wang, B.; Datry, T. Ecological drivers of macroinvertebrate metacommunity assembly in a subtropical river basin in the Yangtze River Delta, China. Sci. Total Environ. 2022, 837, 155687. [Google Scholar] [CrossRef]
- Qin, H.H.; Gao, B.; He, L.; Hu, X.H.; Dong, L.; Sanjay, D.; Dong, A.; Sun, Z.X.; Wan, W. Hydrogeochemical Characteristics and Controlling Factors of the Lhasa River under the Influence of Anthropogenic Activities. Water 2019, 11, 948. [Google Scholar] [CrossRef]
- He, Q.L.; Kuang, X.X.; Ma, E.Z.; Chen, J.X.; Feng, Y.Q.; Zheng, C.M. Reconstructing runoff components and glacier mass balance with climate change: Niyang river basin, southeastern Tibetan plateau. Front. Earth Sci. 2023, 11, 1165390. [Google Scholar] [CrossRef]
- Jiang, X.M.; Xie, Z.C.; Chen, Y.F. Longitudinal patterns of macroinvertebrate communities in relation to environmental factors in a Tibetan-Plateau river system. Quatern Int. 2013, 304, 107–114. [Google Scholar] [CrossRef]
- Li, Z.F.; Jiang, X.M.; Wang, J.; Meng, X.L.; Heino, J.N.; Xie, Z.C. Multiple facets of stream macroinvertebrate alpha diversity are driven by different ecological factors across an extensive altitudinal gradient. Ecol. Evol. 2019, 9, 1306–1322. [Google Scholar] [CrossRef]
- Li, Z.F.; Heino, J.; Zhang, J.Q.; Ge, Y.H.; Liu, Z.Y.; Xie, Z.C. Unravelling the factors affecting multiple facets of macroinvertebrate beta diversity in the World’s Third Pole. J. Biogeogr. 2023, 13, 792–804. [Google Scholar] [CrossRef]
- Xu, M.Z.; Zhao, N.; Zhou, X.D.; Pan, B.Z.; Liu, W.; Tian, S.M.; Wang, Z.Y. Macroinvertebrate Biodiversity Trends and Habitat Relationships within Headwater Rivers of the Qinghai-Tibet Plateau. Water 2018, 10, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.L.; Tan, X.; Zhang, Q.F. Nitrogen loadings affect trophic structure in stream food webs on the Tibetan Plateau, China. Sci. Total Environ. 2022, 844, 157018. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.D.; Xu, M.Z.; Lei, F.K.; Zhang, J.H.; Wang, Z.Y.; Luo, Y.Y. Responses of Macroinvertebrate Assemblages to Flow in the Qinghai-Tibet Plateau: Establishment and Application of a Multi-Metric Habitat Suitability Model. Water Resour. Res. 2022, 58, 19. [Google Scholar] [CrossRef]
- Jian, D.; Hang, D.; Chang, X.; Zhang, Q.; Xie, S.; Chen, F.; Chen, S. Zoobenthos Community Structure in the Middle and Lower Reaches of Lhasa River. J. Hydroecology 2015, 36, 40–46. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.; Wang, D.; Jun, S. Macroinvertebrate community structure and relationships with environmental factors in the Lhasa River Basin. Acta Ecol. Sin. 2019, 39, 757–769. (In Chinese) [Google Scholar] [CrossRef]
- van Klink, R.; Bowler, D.E.; Gongalsky, K.B.; Swengel, A.B.; Gentile, A.; Chase, J.M. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 2020, 368, 417–420. [Google Scholar] [CrossRef]
- Jacobsen, D. Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshw. Biol. 2004, 49, 1293–1305. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C. BAT—Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 2015, 6, 232–236. [Google Scholar] [CrossRef]
- Jia, Y.T.; Jiang, Y.H.; Liu, Y.H.; Sui, X.Y.; Feng, X.; Zhu, R.; Li, K.M.; Chen, Y.F. Unravelling fish community assembly in shallow lakes: Insights from functional and phylogenetic diversity. Rev. Fish. Biol. Fisher 2022, 32, 623–644. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Peng, W.; Qu, X.; Zhang, Y.; Du, L.; Wu, N. Phylogenetic and functional diversity could be better indicators of macroinvertebrate community stability. Ecol. Indic. 2021, 129, 107892. [Google Scholar] [CrossRef]
- Teichert, N.; Lepage, M.; Chevillot, X.; Lobry, J. Environmental drivers of taxonomic, functional and phylogenetic diversity (alpha, beta and gamma components) in estuarine fish communities. J. Biogeogr. 2018, 45, 406–417. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Borcard, D. Modelling directional spatial processes in ecological data. Ecol. Model. 2008, 215, 325–336. [Google Scholar] [CrossRef]
- Blanchet, F.G.; Legendre, P.; Maranger, R.; Monti, D.; Pepin, P. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 2011, 166, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.J.; Heino, J.; Yu, F.D.; Xu, C.S.; Lin, P.C.; He, Y.F.; Liu, F.; Wang, J.W. Local environmental and spatial factors are associated with multiple facets of riverine fish-diversity across spatial scales and seasons. Freshw. Biol. 2023, 68, 2197–2212. [Google Scholar] [CrossRef]
- Dray, S.; Blanchet, G.; Borcard, D.; Clappe, S.; Jombart GG, T.; Larocque, G.; Wagner, H.H. adespatial: Multivariate Multiscale Spatial Analysis, R Package Version 0.3-23. 2023. Available online: https://CRAN.R-project.org/package=adespatial (accessed on 15 December 2023).
- Maloney, K.O.; Krause, K.P.; Buchanan, C.; Hay, L.E.; McCabe, G.J.; Smith, Z.M.; Sohl, T.L.; Young, J.A. Disentangling the potential effects of land-use and climate change on stream conditions. Global Change Biol. 2020, 26, 2251–2269. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Guo, F.; Gao, X.; Wang, Y.Q. Predicting the effect of land use and climate change on stream macroinvertebrates based on the linkage between structural equation modeling and ayesian network. Ecol. Indic. 2018, 85, 820–831. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Chen, J. The 30-m Land Cover Data of Tibetan Plateau (2010); A Big Earth Data Platform for Three Poles: Lanzhou, China, 2018. [Google Scholar]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. _vegan: Community Ecology Package_. Rpackage version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 13 December 2023).
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Dengler, J. Which function describes the species-area relationship best? A review and empirical evaluation. J. Biogeogr. 2009, 36, 728–744. [Google Scholar] [CrossRef]
- He, F.L.; Legendre, P. Species diversity patterns derived from species-area models. Ecology 2002, 83, 1185–1198. [Google Scholar] [CrossRef]
- Fridley, J.D.; Peet, R.K.; Wentworth, T.R.; White, P.S. Connecting fine- and broad-scale species-area relationships of Southeastern US Flora. Ecology 2005, 86, 1172–1177. [Google Scholar] [CrossRef]
- Rosenzweig, M.L.; Rosenzweig, M.L. Species Diversity in Space and Time; Cambridge University Press: New York, NY, USA, 1995. [Google Scholar]
- Baselga, A.O.D.; Villeger, S.; De Bortoli, J.; Leprieur, F.; Logez, M.; Martinez-Santalla, S.; Martin-Devasa, R.; Gomez-Rodriguez, C.; Crujeiras, R. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components, R Package Version 1.6. 2023. Available online: https://CRAN.R-project.org/package=betapart (accessed on 13 December 2023).
- Harrell, F., Jr. Hmisc: Harrell Miscellaneous_. R package version 5.1-1. 2023. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 13 December 2023).
- Mokany, K.; Ware, C.; Woolley, S.N.C.; Ferrier, S.; Fitzpatrick, M.C. A working guide to harnessing generalized dissimilarity modelling for biodiversity analysis and conservation assessment. Glob. Ecol. Biogeogr. 2022, 31, 802–821. [Google Scholar] [CrossRef]
- Dambros, C.S.; Morais, J.W.; Azevedo, R.A.; Gotelli, N.J. Isolation by distance, not rivers, control the distribution of termite species in the Amazonian rain forest. Ecography 2017, 40, 1242–1250. [Google Scholar] [CrossRef]
- Warren, D.L.; Cardillo, M.; Rosauer, D.F.; Bolnick, D.I. Mistaking geography for biology: Inferring processes from species distributions. Trends Ecol. Evol. 2014, 29, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Buckley, L.B.; Jetz, W. Linking global turnover of species and environments. Proc. Natl. Acad. Sci. USA 2008, 105, 17836–17841. [Google Scholar] [CrossRef] [PubMed]
- Fluck, I.E.; Cáceres, N.; Hendges, C.D.; Brum, M.D.; Dambros, C.S. Climate and geographic distance are more influential than rivers on the beta diversity of passerine birds in Amazonia. Ecography 2020, 43, 860–868. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.M.; Tsay, S.C.; Kafatos, M. Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys. Res. Lett. 2009, 36, L07704. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhong, X.H.; Liu, S.Z.; Liu, J.G.; Wang, Z.Y.; Li, M.H. Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. J. Arid. Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- Du, M.Y.; Kawashima, S.; Yonemura, S.; Zhang, X.Z.; Chen, S.B. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global Planet. Change 2004, 41, 241–249. [Google Scholar] [CrossRef]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent glacial retreat and its impact on hydrological processes on the tibetan plateau, China, and sorrounding regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef]
- Hotaling, S.; Finn, D.S.; Giersch, J.J.; Weisrock, D.W.; Jacobsen, D. Climate change and alpine stream biology: Progress, challenges, and opportunities for the future. Biol. Rev. 2017, 92, 2024–2045. [Google Scholar] [CrossRef] [PubMed]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füreder, L.; Cauvy-Fraunié, S.; Gíslason, G.M.; Jacobsen, D.; Hannah, D.M.; et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [PubMed]
- Leprieur, F.; Tedesco, P.A.; Hugueny, B.; Beauchard, O.; Dürr, H.H.; Brosse, S.; Oberdorff, T. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 2011, 14, 325–334. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Xu, C.Y.; Hao, Z.C.; Zhang, L.L.; Ju, Q.; Lai, X.D. Variation of Melt Water and Rainfall Runoff and Their Impacts on Streamflow Changes during Recent Decades in Two Tibetan Plateau Basins. Water 2020, 12, 3112. [Google Scholar] [CrossRef]
- Xu, W.B.; Svenning, J.C.; Chen, G.K.; Zhang, M.G.; Huang, J.H.; Chen, B.; Ordonez, A.; Ma, K.P. Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proc. Natl. Acad. Sci. USA 2019, 116, 26674–26681. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Li, Y.; Wang, X.G.; Li, H.Z.; Zheng, F.D.; Liao, Y.P.; Tang, N.B.; Chen, G.Y.; Yang, C. Assessment of river health based on a novel multidimensional similarity cloud model in the Lhasa River, Qinghai-Tibet Plateau. J. Hydrol. 2021, 603, 127100. [Google Scholar] [CrossRef]
- Heino, J.; Tolonen, K.T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol. Oceanogr. 2017, 62, 2431–2444. [Google Scholar] [CrossRef]
- Weinstein, B.G.; Tinoco, B.; Parra, J.L.; Brown, L.M.; McGuire, J.A.; Stiles, F.G.; Graham, C.H. Taxonomic, Phylogenetic, and Trait Beta Diversity in South American Hummingbirds. Am. Nat. 2014, 184, 211–224. [Google Scholar] [CrossRef]
- Ptatscheck, C.; Gansfort, B.; Majdi, N.; Traunspurger, W. The influence of environmental and spatial factors on benthic invertebrate metacommunities differing in size and dispersal mode. Aquatic Ecol. 2020, 54, 447–461. [Google Scholar] [CrossRef]
- Ao, S.; Chiu, M.-C.; Li, X.; Tan, L.; Cai, Q.; Ye, L. Watershed farmland area and instream water quality co-determine the stream primary producer in the central Hengduan Mountains, southwestern China. Sci. Total Environ. 2021, 770, 145267. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Zhou, S.; Zhang, M.; Peng, W.; Guo, K.; Qu, X.; He, F. Spatial and local environmental factors outweigh geo-climatic gradients in structuring taxonomically and trait-based b-diversity of benthic algae. J. Biogeogr. 2021, 48, 1842–1857. [Google Scholar] [CrossRef]
- Schleuning, M.; Neuschulz, E.L.; Albrecht, J.; Bender, I.M.A.; Bowler, D.E.; Dehling, D.M.; Fritz, S.A.; Hof, C.; Mueller, T.; Nowak, L.; et al. Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends Ecol. Evol. 2020, 35, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.D.; Ren, Z.; Zhang, M.; Liu, X.B.; Peng, W.Q. Sediment heavy metals and benthic diversities in Hun-Tai River, northeast of China. Environ. Sci. Pollut. Res. 2017, 24, 10662–10673. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.J.; Heino, J.; White, J.C.; Ryves, D.B.; Wood, P.J. Environmental factors are primary determinants of different facets of pond macroinvertebrate alpha and beta diversity in a human-modified landscape. Biol. Conserv. 2019, 237, 348–357. [Google Scholar] [CrossRef]
Lhasa River | Niyang River | |||
---|---|---|---|---|
Species | Phylogenetic | Species | Phylogenetic | |
Βsor | 0.784 (100%) | 0.587 (100%) | 0.599 (100%) | 0.499 (100%) |
Βsim | 0.688 (88%) | 0.443 (75%) | 0.534 (89%) | 0.423 (85%) |
Βsne | 0.096 (12%) | 0.144 (25%) | 0.065 (11%) | 0.076 (15%) |
Position | Metrics | Pure Spatial | Pure Climatic | Pure Land Cover | Shared |
---|---|---|---|---|---|
Lhasa River | Srβsor | 22.15 | 1.6 | 0 | 1.25 |
SRβsim | 23.99 | 1.76 | 0 | 1.16 | |
Srβsne | 1.71 | 2.79 | 3.21 | 2.52 | |
Pdβsor | 22.82 | 1.65 | 0.6 | 2.08 | |
Pdβsim | 20.69 | 1.58 | 0.05 | 1.58 | |
Pdβsne | 1.77 | 4.43 | 3.51 | 1.27 | |
Niyang River | Srβsor | 8.11 | 3.48 | 0.07 | 5.89 |
SRβsim | 9.17 | 1.86 | 0.41 | 6.85 | |
Srβsne | 10.62 | 2.2 | 1.09 | 0.24 | |
Pdβsor | 3.68 | 3.74 | 0.14 | 2.2 | |
Pdβsim | 4.95 | 4.22 | 0.15 | 3.35 | |
Pdβsne | 5.18 | 3.67 | 15.09 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Chiu, M.-C.; Lin, X.; Liu, C.; Tian, Z.; Cai, Q.; Resh, V.H. Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China. Water 2024, 16, 882. https://doi.org/10.3390/w16060882
Li J, Chiu M-C, Lin X, Liu C, Tian Z, Cai Q, Resh VH. Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China. Water. 2024; 16(6):882. https://doi.org/10.3390/w16060882
Chicago/Turabian StyleLi, Jingting, Ming-Chih Chiu, Xiaowei Lin, Chan Liu, Zhen Tian, Qinghua Cai, and Vincent H. Resh. 2024. "Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China" Water 16, no. 6: 882. https://doi.org/10.3390/w16060882
APA StyleLi, J., Chiu, M.-C., Lin, X., Liu, C., Tian, Z., Cai, Q., & Resh, V. H. (2024). Environmental Factors Shape the Differences in Biodiversity-Area Relationships in Riverine Macroinvertebrates of Two Rivers in the Tibetan Plateau in China. Water, 16(6), 882. https://doi.org/10.3390/w16060882