Treatment of Cadmium-Contaminated Water Systems Using Modified Phosphate Rock Powder: Contaminant Uptake, Adsorption Ability, and Mechanisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of MPRPs
2.3. Characterization of Modified PRPs
2.4. Adsorption Experiments
2.4.1. Adsorption Kinetics Study
2.4.2. Adsorption Isotherm Study
2.4.3. pH Adsorption Study
2.5. Data Analysis
3. Results and Discussion
3.1. Characterization of MPRPs
3.2. Adsorption Kinetics
3.3. Adsorption Isotherms
3.4. Effect of pH on Cd2+ Adsorption
3.5. Adsorption Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Luo, H.; Tie, B.; Li, D.; Liu, S.; Lei, M.; Du, H. The Long-Term Effectiveness of Ferromanganese Biochar in Soil Cd Stabilization and Reduction of Cd Bioaccumulation in Rice. Biochar 2021, 3, 499–509. [Google Scholar] [CrossRef]
- Yuan, Z.; Luo, T.; Liu, X.; Hua, H.; Zhuang, Y.; Zhang, X.; Zhang, L.; Zhang, Y.; Xu, W.; Ren, J. Tracing Anthropogenic Cadmium Emissions: From Sources to Pollution. Sci. Total Environ. 2019, 676, 87–96. [Google Scholar] [CrossRef]
- Kang, X.; Geng, N.; Li, X.; Yu, J.; Wang, H.; Pan, H.; Yang, Q.; Zhuge, Y.; Lou, Y. Biochar Alleviates Phytotoxicity by Minimizing Bioavailability and Oxidative Stress in Foxtail Millet (Setaria italica L.) Cultivated in Cd- and Zn-Contaminated Soil. Front. Plant Sci. 2022, 13, 782963. [Google Scholar] [CrossRef]
- Ren, T.; Chen, N.; Wan Mahari, W.A.; Xu, C.; Feng, H.; Ji, X.; Yin, Q.; Chen, P.; Zhu, S.; Liu, H.; et al. Biochar for Cadmium Pollution Mitigation and Stress Resistance in Tobacco Growth. Environ. Res. 2021, 192, 110273. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy Metal Water Pollution: A Fresh Look About Hazards, Novel and Conventional Remediation Methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Zgorelec, Ž. Impact of Nutrients and Trace Elements in Soil on Plant Growth: Case of the Second-Generation Energy Crops. Agronomy 2022, 12, 2768. [Google Scholar] [CrossRef]
- Islam, M.M.; Hoque, M.A.; Okuma, E.; Banu, M.N.; Shimoishi, Y.; Nakamura, Y.; Murata, Y. Exogenous Proline and Glycinebetaine Increase Antioxidant Enzyme Activities and Confer Tolerance to Cadmium Stress in Cultured Tobacco Cells. J. Plant Physiol. 2009, 166, 1587–1597. [Google Scholar] [CrossRef] [PubMed]
- Per, T.S.; Khan, S.; Asgher, M.; Bano, B.; Khan, N.A. Photosynthetic and Growth Responses of Two Mustard Cultivars Differing in Phytocystatin Activity Under Cadmium Stress. Photosynthetica 2016, 54, 491–501. [Google Scholar] [CrossRef]
- Chellaiah, E. Cadmium (Heavy Metals) Bioremediation by Pseudomonas aeruginosa: A Minireview. Appl. Water Sci. 2018, 8, 151. [Google Scholar] [CrossRef]
- Cui, S.; Gao, S.; Zhang, F.; Fu, Q.; Wang, M.; Liu, D.; Li, K.; Song, Z.; Chen, P. Heavy Metal Contamination and Ecological Risk in Sediment from Typical Suburban Rivers. River Res. Appl. 2021, 37, 1080–1088. [Google Scholar] [CrossRef]
- Geng, W.; Xiao, X.; Zhang, L.; Ni, W.; Li, N.; Li, Y. Response and Tolerance Ability of Chlorella vulgaris to Cadmium Pollution Stress. Environ. Tech. 2022, 43, 4391–4401. [Google Scholar] [CrossRef]
- Yu, Z.; Tang, J. Quality Improvement in Vegetable Greenhouse by Cadmium Pollution Remediation. J. Food Qual. 2022, 2022, 8335753. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Olowe, O.M.; Asemoloye, M.D. Phytoremediation Technology and Food Security Impacts of Heavy Metal Contaminated Soils: A Review of Literature. Chemosphere 2022, 288, 132555. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Nan, J.; Mu, Y.; Zu, X.; Guo, M. Study on the Treatment of Sudden Cadmium Pollution in Surface Water by a Polymer Enhanced Ultrafiltration Process. RSC Adv. 2021, 11, 7405–7415. [Google Scholar] [CrossRef] [PubMed]
- Che, N.; Liu, N.; Li, Y.; Li, C.; Liu, Y.; Li, C. Three Dimensional BC/rGA Aerogel: Preparation, Characterization, and Adsorption of Cr(VI). Biochar 2022, 4, 65. [Google Scholar] [CrossRef]
- Seliem, M.K.; Mobarak, M. Cr(VI) Uptake by a New Adsorbent of CTAB–Modified Carbonized Coal: Experimental and Advanced Statistical Physics Studies. J. Mol. Liq. 2019, 294, 111676. [Google Scholar] [CrossRef]
- Kamran, M.; Malik, Z.; Parveen, A.; Zong, Y.; Abbasi, G.H.; Rafiq, M.T.; Shaaban, M.; Mustafa, A.; Bashir, S.; Rafay, M.; et al. Biochar Alleviates Cd Phytotoxicity by Minimizing Bioavailability and Oxidative Stress in Pak Choi (Brassica chinensis L.) Cultivated in Cd-Polluted Soil. J. Environ. Manag. 2019, 250, 109500. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, S.; Ding, D.; Chen, J.; Yang, Y.; Lei, Z.; Feng, C.; Zhang, Z. Effective Adsorption of Cr (VI) from Aqueous Solution Using Natural Akadama Clay. J. Colloid Interface Sci. 2013, 395, 198–204. [Google Scholar] [CrossRef]
- Wang, X.; Xia, S.; Chen, L.; Zhao, J.; Chovelon, J.; Nicole, J.J. Biosorption of cadmium(II) and lead(II) ions from aqueous solutions onto dried activated sludge. Environ. Sci. 2006, 18, 840–844. [Google Scholar] [CrossRef]
- Roshanfekr Rad, L.R.; Anbia, M. Zeolite-Based Composites for the Adsorption of Toxic Matters from Water: A Review. J. Environ. Chem. Eng. 2021, 9, 106088. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, J.; Zhu, J.; Zhou, X.; Bai, R. Removal of Mercury(II) and Methylene Blue from a Wastewater Environment with Magnetic Graphene Oxide: Adsorption Kinetics, Isotherms and Mechanism. RSC Adv. 2016, 6, 82523–82536. [Google Scholar] [CrossRef]
- Ren, W.; Xia, W.; Wei, M.; Du, Y. Research Progress in Remediation of Pb/Zn-Contaminated Soil by Modified Phosphate Rock Powder. J. Nanjing Technol. Natl Sci. 2015, 13. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, H.; Cao, Y. Effects of the Joint Application of Phosphate Rock, Ferric Nitrate and Plant Ash on the Immobility of As, Pb and Cd in Soils. J. Environ. Manag. 2020, 265, 110576. [Google Scholar] [CrossRef]
- Xie, Z.M.; Wang, B.L.; Sun, Y.F.; Li, J. Field Demonstration of Reduction of Lead Availability in Soil and Cabbage (Brassica chinensis L.) Contaminated by Mining Tailings Using Phosphorus Fertilizers. J. Zhejiang Univ. Sci. B. 2006, 7, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Elouear, Z.; Bouzid, J.; Boujelben, N.; Feki, M.; Jamoussi, F.; Montiel, A. Heavy Metal Removal from Aqueous Solutions by Activated Phosphate Rock. J. Hazard. Mater. 2008, 156, 412–420. [Google Scholar] [CrossRef]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Cadmium Mobility, Uptake and Anti-oxidative Response of Water Spinach (Ipomoea aquatic) Under Rice Straw Biochar, Zeolite and Rock Phosphate as Amendments. Chemosphere 2018, 194, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chen, D.; Chen, B.; Kong, L.; Su, M. Enhanced Uranium(VI) Adsorption by Chitosan Modified Phosphate Rock. Colloids Surf. A Physicochem. Eng. Asp. 2018, 547, 141–147. [Google Scholar] [CrossRef]
- Gilbert, N. Environment: The Disappearing Nutrient. Nature 2009, 461, 718–761. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Shao, C.; Chen, W.; Lei, Y.; Ke, Q.; Guo, Y. Mesoporous Carbonated Hydroxyapatite/chitosan porous materials for removal of Pb(II) ions under flow conditions. RSC Adv. 2016, 6, 113940–113950. [Google Scholar] [CrossRef]
- Haripriyan, U.; Gopinath, K.P.; Arun, J. Chitosan Based Nano Adsorbents and Its Types for Heavy Metal Removal: A Mini Review. Mater. Lett. 2022, 312, 131670. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Y.; Liu, S.; Zeng, G.; Tan, X.; Huang, B.; Tang, X.; Wang, S.; Hua, Q.; Yan, Z. Competitive Adsorption of Pb(II), Cd(II) and Cu(II) onto Chitosan-Pyromellitic Dianhydride Modified Biochar. J. Colloid Interface Sci. 2017, 506, 355–364. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Ye, Q.; Wu, D.; Wang, L.; Yu, Y.; Deng, B.; Du, J. Composition and Copper Binding Properties of Aquatic Fulvic Acids in Eutrophic Taihu Lake, China. Chemosphere 2017, 172, 496–504. [Google Scholar] [CrossRef]
- Wang, H.; Xing, L.; Zhang, H.; Gui, C.; Jin, S.; Lin, H.; Li, Q.; Cheng, C. Key Factors to Enhance Soil Remediation by Bioelectrochemical Systems (BESs): A Review. Chem. Eng. J. 2021, 419, 129600. [Google Scholar] [CrossRef]
- Lalas, S.; Athanasiadis, V.; Dourtoglou, V.G. Humic and Fulvic Acids as Potentially Toxic Metal Reducing Agents in Water. CLEAN Soil Air Water 2018, 46, 1700608. [Google Scholar] [CrossRef]
- Wang, P.; Cheng, H.; Ding, J.; Ma, J.; Jiang, J.; Huang, Z.; Li, J.; Pang, S.; Guan, C.; Gao, Y. Cadmium Removal with Thiosulfate/Permanganate (TS/Mn(VII)) System: MnO2 Adsorption and/or CdS Formation. Chem. Eng. J. 2020, 380, 122585. [Google Scholar] [CrossRef]
- Li, B.; Gong, J.; Fang, J.; Zheng, Z.; Fan, W. Cysteine Chemical Modification for Surface Regulation of Biochar and Its Application for Polymetallic Adsorption from Aqueous Solutions. Environ. Sci. Pollut. Res. Int. 2021, 28, 1061–1071. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Y.; Liu, J.; Chao, S.; Yang, T.; Li, L.; Wang, C.; Li, X. A Novel Hollow Carbon@MnO2 Electrospun Nanofiber Adsorbent for Efficient Removal of Pb2+ in Wastewater. Chem. Res. Chin. Univ. 2021, 37, 496–504. [Google Scholar] [CrossRef]
- Stolyarchuk, N.V.; Kolev, H.; Kanuchova, M.; Keller, R.; Vaclavikova, M.; Melnyk, I.V. Synthesis and Sorption Properties of Bridged Polysilsesquioxane Microparticles Containing 3-Mercaptopropyl Groups in the Surface Layer. Colloids Surf. A Physicochem. Eng. Asp. 2018, 538, 694–702. [Google Scholar] [CrossRef]
- Sliesarenko, V.; Tomina, V.; Dudarko, O.; Bauman, M.; Lobnik, A.; Melnyk, I. Functionalization of Polymeric Membranes with Phosphonic and Thiol Groups for Water Purification from Heavy Metal Ions. Appl. Nanosci. 2020, 10, 337–346. [Google Scholar] [CrossRef]
- Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles. J. Hazard. Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef]
- Russakova, A.V.; Altynbaeva, L.S.; Barsbay, M.; Zheltov, D.A.; Zdorovets, M.V.; Mashentseva, A.A. Kinetic and Isotherm Study of As(III) Removal from Aqueous Solution by PET Track-Etched Membranes Loaded with Copper Microtubes. Membranes 2021, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, X.; Tang, L.; Zhang, F.; Zeng, G.; Peng, X.; Luo, L.; Deng, Y.; Pang, Y.; Zhang, J. Insight into Highly Efficient Co-removal of p-Nitrophenol and Lead by Nitrogen-Functionalized Magnetic Ordered Mesoporous Carbon: Performance and Modelling. J. Hazard. Mater. 2017, 333, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Khaled, H.; Hafed, E.; Olivier, M.; Christophe, D. Adsorption of Nucleotides on Biomimetic Apatite: The Case of Adenosine 5′-Triphosphate (ATP). Appl. Surf. Sci. 2017, 360, 979–988. [Google Scholar]
- Wang, G.; Bo, W.; Wan, K.; Fan, J.; Miao, Z.; Xue, S. Remediation of the Soil Contaminated by Heavy Metals with Nano-hydroxy Iron Phosphate Coated with Fulvic Acid. Environ. Tech. 2022, 44, 4123–4135. [Google Scholar] [CrossRef]
- Perumal, S.; Atchudan, R.; Yoon, D.H.; Joo, J.; Cheong, I.W. Graphene Oxide-Embedded Chitosan/Gelatin Hydrogel Particles for the Adsorptions of Multiple Heavy Metal Ions. J. Mater. Sci. 2020, 55, 9354–9363. [Google Scholar] [CrossRef]
- Xu, H.; Li, X.; Gao, M.; Hu, X.; Zhang, X.; Li, Y.; Xu, X.; Hu, J.; Tang, C.; Hu, X. Chitosan and Biochar Synergize the Efficient Elimination of Lead from Wastewater by Sulfidised Nano-zero-Valent Iron. J. Environ. Chem. Eng. 2022, 10, 107101. [Google Scholar] [CrossRef]
- Xiong, T.; Yuan, X.; Cao, X.; Wang, H.; Jiang, L.; Wu, Z.; Liu, Y. Mechanistic Insights into Heavy Metals Affinity in Magnetic MnO2@Fe3O4/Poly(m-Phenylenediamine) Core–Shell Adsorbent. Ecotoxicol. Environ. Saf. 2020, 192, 110326. [Google Scholar] [CrossRef]
- Chen, B.; Li, L.; Liu, L.; Cao, J. Effective Adsorption of Heavy Metal Ions in Water by Sulfhydryl Modified Nano Titanium Dioxide. Front. Chem. 2022, 10, 1072139. [Google Scholar] [CrossRef]
- Zeng, M.; Zhou, X.; Guo, J.; Liu, K.; Zhong, C.; Liu, Y. In Situ Remediation of Cd(II) Contaminated Paddy Fields with Activated Ca Si Mineral Material Derived from Potash Feldspar and Its Mechanism. Ecol. Eng. 2020, 158, 106052. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Sárossy, Z.; Dong, C.; Glarborg, P. Release and Transformation of Chlorine and Potassium During Pyrolysis of KCl Doped Biomass. Fuel 2017, 197, 422–432. [Google Scholar] [CrossRef]
- Wang, Z.; Yin, P.; Qu, R.; Chen, H.; Wang, C.; Ren, S. Adsorption Kinetics, Thermodynamics and Isotherm of Hg(II) from Aqueous Solutions Using Buckwheat Hulls from Jiaodong of China. Food Chem. 2013, 136, 1508–1514. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, Y.; Hu, L.; Gao, L.; Du, B.; Wei, Q. Mechanism of Pb(ii) and Methylene Blue Adsorption onto Magnetic Carbonate Hydroxyapatite/Graphene Oxide. RSC Adv. 2015, 5, 9759–9770. [Google Scholar] [CrossRef]
- Rengaraj, S.; Moon, S.H. Kinetics of Adsorption of Co(II) Removal from Water and Wastewater by Ion Exchange Resins. Water Res. 2002, 36, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Estupiñán, P.; Erto, A.; Giraldo, L.; Moreno-Piraján, J.C. Adsorption of Cd(II) on Modified Granular Activated Carbons: Isotherm and Column Study. Molecules 2017, 22, 2280. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, S.; Cao, X.; Lin, J.; Feng, J.; Wang, H.; Pan, H.; Yang, Q.; Lou, Y.; Zhuge, Y. Cd Removal from Aqueous Solutions Using a New Modified Zeolite Adsorbent. Minerals 2023, 13, 197. [Google Scholar] [CrossRef]
- Kara, A.; Demirbel, E.; Tekin, N.; Osman, B.; Beşirli, N. Magnetic Vinylphenyl Boronic Acid Microparticles for Cr(VI) Adsorption: Kinetic, Isotherm and Thermodynamic Studies. J. Hazard. Mater. 2015, 286, 612–623. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xu, Y.; Huang, Q.; Sun, Y.; Liang, X.; Wang, L.; Qin, X.; Zhao, L. Adsorption characteristics and the removal mechanisms of two novel Fe-Zn composite modified biochars for Cd(II) in water. Bioresour. Technol. 2021, 333, 125078. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, C.; Zhang, L.; Liu, H.; Cao, B.; Liu, L.; Gong, W. Adsorption Studies of Cadmium onto Magnetic Fe3O4@FePO4 and Its Preconcentration with Detection by Electrothermal Atomic Absorption Spectrometry. Talanta 2018, 181, 352–358. [Google Scholar] [CrossRef]
- Qiu, B.; Tao, X.; Wang, H.; Li, W.; Ding, X.; Chu, H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrol. 2021, 155, 105081. [Google Scholar] [CrossRef]
- Mariana, M.; Hps, A.K.; Mistar, E.M.; Yahya, E.; Alfatah, T. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Xu, Y.; Schwartz, F.W.; Traina, S.J. Sorption of Zn2+ and Cd2+ on Hydroxyapatite Surfaces. Environ. Sci. Technol. 1994, 28, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Prasad, M.; Goswami, R.; Ranshore, S.; Kulshreshtha, A.; Kumar Sinha, A.S. Kinetic Model for Sorption of Divalent Heavy Metal Ions on Low Cost Minerals. Korean J. Chem. Eng. 2016, 33, 649–656. [Google Scholar] [CrossRef]
- Du, Y.; Wei, L.; Reddy, K.; Jin, F.; Wu, H.; Liu, Z. New Phosphate-Based Binder for Stabilization of Soils Contaminated with Heavy Metals: Leaching, Strength and Microstructure Characterization. J. Environ. Manag. 2014, 146, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, G.; Wang, M.; Zhang, J.; Wang, Z.; Li, F.; Chen, H. Enhanced Stabilization of Pb, Zn, and Cd in Contaminated Soils Using Oxalic Acid-Activated Phosphate Rocks. Environ. Sci. Pollut. Res. Int. 2018, 25, 2816–2886. [Google Scholar] [CrossRef]
- Saxena, S.; D’Souza, S.F. Heavy Metal Pollution Abatement Using Rock Phosphate Mineral. Environ. Int. 2006, 32, 199–202. [Google Scholar] [CrossRef]
Formula Name | Formula | Formula Explanation |
---|---|---|
(1) Adsorption capacity of Cd2+ | Qt (mg g−1): the adsorbing capacity of PRP and MPRPs for Cd2+ at time t; m (g): the mass of the PR and MPRPs; C0 (mg L−1): the initial concentration of the Cd2+ solution; Ct (mg L−1): the Cd2+ solution concentration at time t; V (L): the volume of the solution. | |
(2) PFO model | Qt (mg kg−1): the adsorption capacity of PRP and MPRPs for Cd2+ at time t; Qe (mg kg−1): the amount of Cd2+ adsorbed in the adsorption equilibrium state; t (min): the time taken for the adsorption reaction; k1 (h−1) and k2 (g mg−1 h1): the kinetic rate constants of Lagrange’s pseudo-first-order model and pseudo-second-order model. | |
(3) PSO model | ||
(4) LFD model | F: the fractional achievement at equilibrium (); Kfd (min−1): the adsorption rate constant. | |
(5) IPD model | Ki (mg g−1 min0.5): the intraparticle diffusion rate constant; C (mg g−1): a constant related to the thickness of the boundary layer. | |
(6) Cd2+ removal rate (RR) | RR: the removal rate; C (mg L−1): the Cd2+ concentration in the sample supernatant. |
Formula Name | Formula | Formula Explanation |
---|---|---|
(1) Langmuir model | qe (mg g−1): Cd2+ adsorption capacity of PRP and MPRPs per unit mass; qmax (mg g−1): maximum adsorption capacity; Ce (mg L−1): concentration of Cd2+ at equilibrium; kL: Langmuir constant related to the adsorption capacity; kF and n: Freundlich isotherm constants related to the adsorption capacity and adsorption strength, respectively. | |
(2) Freundlich model | ||
(3) Separation factor (RL) | RL: a scalar number; C0 (mg L−1) and kL are the same as above. |
Pseudo-First-Order Model | Pseudo-Second-Order Model | |||||
---|---|---|---|---|---|---|
Qe | k1 | R2 | Qe | k2 | R2 | |
PRP | 0.86 | 3.252 | 0.881 | 0.91 | 5.516 | 0.969 |
FMPRP | 1.03 | 3.503 | 0.622 | 1.05 | 6.641 | 0.962 |
CMPRP | 1.83 | 6.873 | 0.610 | 1.88 | 7.835 | 0.955 |
MMPRP | 0.86 | 1.841 | 0.908 | 0.95 | 2.829 | 0.984 |
SMPRP | 0.53 | 8.574 | 0.857 | 0.54 | 31.801 | 0.968 |
Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|
qmax | kL | R2 | n | kF | R2 | |
PRP | 11.19 | 0.401 | 0.996 | 0.155 | 4.562 | 0.941 |
FMPRP | 7.76 | 0.259 | 0.996 | 0.177 | 2.742 | 0.988 |
CMPRP | 12.73 | 0.025 | 0.986 | 0.329 | 1.788 | 0.9911 |
MMPRP | 5.40 | 0.164 | 0.983 | 0.182 | 1.821 | 0.988 |
SMPRP | 1.61 | 0.078 | 0.996 | 0.204 | 0.438 | 0.879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Kang, X.; Li, Y.; Yu, J.; Wang, H.; Pan, H.; Yang, Q.; Yang, Z.; Sun, Y.; Zhuge, Y.; et al. Treatment of Cadmium-Contaminated Water Systems Using Modified Phosphate Rock Powder: Contaminant Uptake, Adsorption Ability, and Mechanisms. Water 2024, 16, 862. https://doi.org/10.3390/w16060862
Gao S, Kang X, Li Y, Yu J, Wang H, Pan H, Yang Q, Yang Z, Sun Y, Zhuge Y, et al. Treatment of Cadmium-Contaminated Water Systems Using Modified Phosphate Rock Powder: Contaminant Uptake, Adsorption Ability, and Mechanisms. Water. 2024; 16(6):862. https://doi.org/10.3390/w16060862
Chicago/Turabian StyleGao, Shuo, Xirui Kang, Yaping Li, Jinpeng Yu, Hui Wang, Hong Pan, Quangang Yang, Zhongchen Yang, Yajie Sun, Yuping Zhuge, and et al. 2024. "Treatment of Cadmium-Contaminated Water Systems Using Modified Phosphate Rock Powder: Contaminant Uptake, Adsorption Ability, and Mechanisms" Water 16, no. 6: 862. https://doi.org/10.3390/w16060862
APA StyleGao, S., Kang, X., Li, Y., Yu, J., Wang, H., Pan, H., Yang, Q., Yang, Z., Sun, Y., Zhuge, Y., & Lou, Y. (2024). Treatment of Cadmium-Contaminated Water Systems Using Modified Phosphate Rock Powder: Contaminant Uptake, Adsorption Ability, and Mechanisms. Water, 16(6), 862. https://doi.org/10.3390/w16060862