Integrated Application of SWAT and L-THIA Models for Nonpoint Source Pollution Assessment in Data Scarce Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Study Area
2.3. Data Source
2.4. Research Methods
2.4.1. SWAT Modeling
2.4.2. Calibration and Validation of SWAT Model
2.4.3. Derivation of Values for L-THIA Model
3. Results
3.1. Model Calibration and Validation
3.2. Analysis of Temporal Variation of NPS
3.3. Analysis of Spatial Distribution of NPS
3.4. Derivation Results of Values
4. Discussion
4.1. Rationality of Simulation Results
4.2. Significance of the Derived for NPS Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okungu, J.O.; Njoka, S.; Abuodha, J.O.Z.; Hecky, R.E. An introduction to Lake Victoria catchment, water quality, physical limnology and ecosystem status (Kenyan sector). In National Water Quality Synthesis Report, Kenya; Lake Victoria Environment Management Project (LVEMP): Kisumu, Kenya, 2005; pp. 9–36. [Google Scholar]
- Nyamweya, C.; Sturludottir, E.; Tomasson, T.; Fulton, E.A.; Taabu-Munyaho, A.; Njiru, M.; Stefansson, G. Exploring Lake Victoria ecosystem functioning using the Atlantis modeling framework. Environ. Model. Softw. 2016, 86, 158–167. [Google Scholar] [CrossRef]
- Banadda, N. Characterization of non point source pollutants and their dispersion in Lake Victoria: A case study of Gaba landing site in Uganda. Afr. J. Environ. Sci. Technol. 2011, 5, 73–79. [Google Scholar] [CrossRef]
- Glaser, S.M.; Hendrix, C.S.; Franck, B.; Wedig, K.; Kaufman, L. Armed conflict and fisheries in the Lake Victoria basin. Ecol. Soc. 2019, 24, 25. [Google Scholar] [CrossRef]
- Njiru, J.; van der Knaap, M.; Kundu, R.; Nyamweya, C. Lake Victoria fisheries: Outlook and management. Lakes Reserv. Res. Manag. 2018, 23, 152–162. [Google Scholar] [CrossRef]
- Hecky, R.E.; Mugidde, R.; Ramlal, P.S.; Talbot, M.R.; Kling, G.W. Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshw. Biol. 2010, 55, 19–42. [Google Scholar] [CrossRef]
- Nyamweya, C.S.; Natugonza, V.; Taabu-Munyaho, A.; Aura, C.M.; Njiru, J.M.; Ongore, C.; Mangeni-Sande, R.; Kashindye, B.B.; Odoli, C.O.; Ogari, Z.; et al. A century of drastic change: Human-induced changes of Lake Victoria fisheries and ecology. Fish. Res. 2020, 230, 105564. [Google Scholar] [CrossRef]
- Kandie, F.J.; Krauss, M.; Beckers, L.M.; Massei, R.; Fillinger, U.; Becker, J.; Liess, M.; Torto, B.; Brack, W. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci. Total Environ. 2020, 714, 136748. [Google Scholar] [CrossRef]
- Shen, Q.; Friese, K.; Gao, Q.; Yu, C.; Kimirei, I.A.; Kishe-Machumu, M.A.; Zhang, L.; Wu, G.; Liu, Y.; Zhang, J.; et al. Status and changes of water quality in typical near-city zones of three East African Great Lakes in Tanzania. Environ. Sci. Pollut. Res. 2022, 29, 34105–34118. [Google Scholar] [CrossRef]
- Güereña, D.; Neufeldt, H.; Berazneva, J.; Duby, S. Water hyacinth control in Lake Victoria: Transforming an ecological catastrophe into economic, social, and environmental benefits. Sustain. Prod. Consum 2015, 3, 59–69. [Google Scholar] [CrossRef]
- Kimirei, I.A.; Semba, M.; Mwakosya, C.; Mgaya, Y.D.; Mahongo, S.B. Environmental changes in the Tanzanian part of Lake Victoria. Lake Vic. Fish. Resour. Res. Manag. Tanzan. 2017, 93, 37–59. [Google Scholar]
- Mchau, G.J.; Makule, E.; Machunda, R.; Gong, Y.Y.; Kimanya, M. Harmful algal bloom and associated health risks among users of Lake Victoria freshwater: Ukerewe Island, Tanzania. J. Water Health 2019, 17, 826–836. [Google Scholar] [CrossRef]
- Shayo, S.; Limbu, S.M. Nutrient release from sediments and biological nitrogen fixation: Advancing our understanding of eutrophication sources in Lake Victoria, Tanzania. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2018, 23, 312–323. [Google Scholar] [CrossRef]
- Machiwa, P.K. Water quality management and sustainability: The experience of Lake Victoria Environmental Management Project (LVEMP)––Tanzania. Phys. Chem. Earth, Parts A/B/C 2003, 28, 1111–1115. [Google Scholar] [CrossRef]
- Kipkoech, C.C. Assessment of Pollution Load on the Kenyan Catchment of Lake Victoria Basin Using GIS Tools. Ph.D. Thesis, Nagoya University, Nagoya, Japan, 2015. [Google Scholar]
- Zong, Y.; Chen, S.S.; Kattel, G.R.; Guo, Z. Spatial distribution of non-point source pollution from total nitrogen and total phosphorous in the African city of Mwanza (Tanzania). Front. Environ. Sci. 2023, 11, 580. [Google Scholar] [CrossRef]
- Chao, X.; Witthaus, L.; Bingner, R.; Jia, Y.; Locke, M.; Lizotte, R. An integrated watershed and water quality modeling system to study lake water quality responses to agricultural management practices. Environ. Model. Softw. 2023, 164, 105691. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R.; Jing, Y. Identification of regional water resource stress based on water quantity and quality: A case study in a rapid urbanization region of China. J. Clean. Prod. 2018, 209, 216–223. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Owen, M.R.; Pavlowsky, R.T. Simulating nonpoint source pollutant loading in a karst basin: A SWAT modeling application. Sci. Total Environ. 2021, 785, 147295. [Google Scholar] [CrossRef]
- Aloui, S.; Mazzoni, A.; Elomri, A.; Aouissi, J.; Boufekane, A.; Zghibi, A. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. J. Environ. Manag. 2023, 326, 116799. [Google Scholar] [CrossRef]
- Song, Z.; Li, H.; Yu, P.; Xie, C.; Zhang, S. Simulation of Non-Point Source Pollution Load and Evaluation of Best Management Practices in the Upper Beiyun River Watershed. Res. Environ. Sci. 2023, 36, 334–344. [Google Scholar]
- Chen, S.; Fu, Y.; Wu, Z.; Hao, F.; Hao, Z.; Guo, Y.; Geng, X.; Li, X.Y.; Zhang, X.; Tang, J.; et al. Informing the SWAT model with remote sensing detected vegetation phenology for improved modeling of ecohydrological processes. J. Hydrol. 2023, 616, 128817. [Google Scholar] [CrossRef]
- Wang, W.; Shi, H.; Li, X.; Zheng, Q.; Zhang, W.; Sun, Y. Effects of correcting crop planting structure data to improve simulation accuracy of SWAT model in irrigation district based on remote sensing. Trans. Chin. Soc. Agric. Eng. 2020, 36, 158–166. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, P.; Dai, S.; Han, Y. Analysis of non-point source nitrogen pollution in watersheds based on SWAT model. Ecol. Indic. 2022, 138, 108881. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Y.; Li, S.; Wang, W.; Liu, G.; Wang, M.; Shen, Z. New method for scaling nonpoint source pollution by integrating the SWAT model and IHA-based indicators. J. Environ. Manag. 2023, 325, 116491. [Google Scholar] [CrossRef]
- Luo, Q.; Ren, l.; Peng, W. Simulation study and analysis of non-point source nitrogen and phosphorus load in the Taizihe Watershed in Liaoning Province. China Environ. Sci. 2014, 34, 178–186. [Google Scholar]
- Ndehedehe, C.; Awange, J.; Agutu, N.; Kuhn, M.; Heck, B. Understanding changes in terrestrial water storage over West Africa between 2002 and 2014. Adv. Water Resour. 2016, 88, 211–230. [Google Scholar] [CrossRef]
- Pavur, G.; Lakshmi, V. Observing the recent floods and drought in the Lake Victoria Basin using Earth observations and hydrological anomalies. J. Hydrol. Reg. Stud. 2023, 46, 101347. [Google Scholar] [CrossRef]
- Kimwaga, R.J.; Bukirwa, F.; Banadda, N.; Wali, U.G.; Nhapi, I.; Mashauri, D.A. Modelling the impact of land use changes on sediment loading into lake Victoria using SWAT model: A Case of Simiyu Catchment Tanzania. Open Environ. Eng. J. 2012, 5, 66–76. [Google Scholar] [CrossRef]
- Cheruiyot, C.K.; Muhandiki, V.S. Modeling of runoff pollution load in a data scarce situation using swat, Sondu watershed, Lake Victoria Basin. J. Environ. Stud. Manag. 2015, 8, 494. [Google Scholar] [CrossRef]
- Lang, H.; Wang, W.; Wang, W.; Xu, C.; Liu, T.; Li, T. Effect of Land Use Change on Spatial-Temporal Characteristics of Non-Point Source Pollution in Xiaojiang Watershed. Res. Environ. Sci. 2010, 23, 1158–1166. [Google Scholar]
- Mirzaei, M.; Solgi, E.; Mahiny, A.S. Modeling of Non-Point Source Pollution by Long-Term Hydrologic Impact Assessment (L-THIA)(Case Study: Zayandehrood Watershed) in 2015. Arch. Hyg. Sci. 2017, 6, 196–205. [Google Scholar] [CrossRef]
- Bhaduri, B.; Minner, M.; Tatalovich, S.; Harbor, J. Long-term hydrologic impact of urbanization: A tale of two models. J. Water Resour. Plan. Manag. 2001, 127, 13–19. [Google Scholar] [CrossRef]
- Mirzaei, M.; Solgi, E.; Salmanmahiny, A. Assessment of impacts of land use changes on surface water using L-THIA model (case study: Zayandehrud river basin). Environ. Monit. Assess. 2016, 188, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, S.; Wallace, C.W.; Chaubey, I.; Flanagan, D.C.; Theller, L.O.; Engel, B.A. Comparison of Computer Models for Estimating Hydrology and Water Quality in an Agricultural Watershed. Water Resour. Manag. 2017, 31, 3641–3665. [Google Scholar] [CrossRef]
- Nejadhashemi, A.P.; Woznicki, S.A.; Douglas-Mankin, K.R. Comparison of four models (STEPL, PLOAD, L-THIA, and SWAT) in simulating sediment, nitrogen, and phosphorus loads and pollutant source areas. Trans. ASABE 2011, 54, 875–890. [Google Scholar] [CrossRef]
- Mulungu, D.M.M.; Munishi, S.E. Simiyu River catchment parameterization using SWAT model. Phys. Chem. Earth Parts A/B/C 2007, 32, 1032–1039. [Google Scholar] [CrossRef]
- Mwanuzi, F.L.; Abuodha, J.O.Z.; Muyodi, F.J.; Hecky, R.E. Lake Victoria Environment Management Project (LVEMP) Water Quality and Ecosystem Status; South Eastern Kenya University: Kwa Vonza, Kitui County, Kenya, 2005. [Google Scholar]
- Rwetabula, J.; De Smedt, F.; Rebhun, M. Prediction of runoff and discharge in the Simiyu River (tributary of Lake Victoria, Tanzania) using the WetSpa model. Hydrol. Earth Syst. Sci. Discuss 2007, 4, 881–908. [Google Scholar]
- Mulungu, D.M.; Kashaigili, J.J. Dynamics of land use and land cover changes and implications on river flows in Simiyu River catchment, Lake Victoria Basin in Tanzania. Nile Water Sci. Eng. J 2012, 5, 23–35. [Google Scholar]
- Mayo, A.W.; Muraza, M.; Norbert, J. Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria. Phys. Chem. Earth Parts A/B/C 2018, 105, 136–146. [Google Scholar] [CrossRef]
- Van Griensven, A.; Popescu, I.; Abdelhamid, M.R.; Ndomba, P.M.; Beevers, L.; Betrie, G.D. Comparison of sediment transport computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania. Phys. Chem. Earth Parts A/B/C 2013, 61, 12–21. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, L.; Ma, F.; Li, H.; Zhang, S.; Liang, X. Localization Method for SWAT Model Soil Database Based on HWSD. China Water Wastewater 2014, 30, 135–138. [Google Scholar]
- Ayugi, B.; Ngoma, H.; Babaousmail, H.; Karim, R.; Iyakaremye, V.; Sian, K.; Ongoma, V. Evaluation and projection of mean surface temperature using CMIP6 models over East Africa. J. Afr. Earth Sci. 2021, 181, 104226. [Google Scholar] [CrossRef]
- Mmame, B.; Sunitha, P.; Samatha, K.; Rao, S.R.; Satish, P.; Amasarao, A.; Sekhar, K.C. Assessment of CMIP6 Model Performance in Simulating Atmospheric Aerosol and Precipitation over Africa. Adv. Space Res. 2023, 72, 3096–3108. [Google Scholar] [CrossRef]
- NBS. National Data. Available online: https://www.nbs.go.tz/index.php/en/ (accessed on 8 September 2023).
- Ni, X.; Parajuli, P.B. Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function. Agric. Water. Manag. 2018, 210, 78–87. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Z.; Chen, Y.; Li, Y.; Liu, H.; Song, L.; Chen, Y. Assessing non-point source pollution in an apple-dominant basin and associated best fertilizer management based on SWAT modeling. Int. Soil Water Conserv. Res. 2023, 11, 353–364. [Google Scholar] [CrossRef]
- Li, S.; Li, J.; Xia, J.; Hao, G. Optimal control of nonpoint source pollution in the Bahe River Basin, Northwest China, based on the SWAT model. Environ. Sci. Pollut. Res. 2021, 28, 55330–55343. [Google Scholar] [CrossRef] [PubMed]
- Kuang, S.; Li, T.; Zhao, Z. Non-point source pollution loads analysis of Laixi River watershed, Sichuan based on L-THIA model. Res. Environ. Sci. 2018, 31, 688–696. [Google Scholar]
- Jiang, J.; Xu, S.; Huang, H.; Liu, H. Non-point source pollution load of total nitrogen in Daya Bay catchment based on L-THIA model and 3S techniques. J. Oceanogr. 2019, 38, 558–568. [Google Scholar]
- Liu, Y.; Wu, G.; Fan, X.; Gan, G.; Wang, W.; Liu, Y. Hydrological impacts of land use/cover changes in the Lake Victoria basin. Ecol. Indic. 2022, 145, 109580. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Hubbart, J.A. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Sci. Total Environ. 2016, 572, 232–243. [Google Scholar] [CrossRef]
- Kimwaga, R.J.; Mashauri, D.A.; Bukirwa, F.; Banadda, N.; Wali, U.G.; Nhapi, I.; Nansubuga, I. Modelling of non-point source pollution around lake victoria using swat model: A case of simiyu catchment Tanzania. Open Environ. Eng. J. 2011, 4, 112–123. [Google Scholar] [CrossRef]
- Jiang, J.; An, N.; Zhang, Y.; Li, J.; Gao, N. Influence of rainfall run-off in hydrologic process on non-point pollution. Agric. Sci. Tech. 2012, 13, 380–444. [Google Scholar]
- Niraula, R.; Kalin, L.; Srivastava, P.; Anderson, C.J. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecol. Model. 2013, 268, 123–133. [Google Scholar] [CrossRef]
- Kimwaga, R.J.; Mashauri, D.A.; Bukirwa, F.; Banadda, N.; Wali, U.G.; Nhapi, I. Development of best management practices for controlling the non-point sources of pollution around Lake Victoria using SWAT Model: A Case of Simiyu catchment Tanzania. Open Environ. Eng. J. 2012, 5, 77–83. [Google Scholar] [CrossRef]
- Shayo, S.D.; Lugomela, C.; Machiwa, J.F. Influence of land use patterns on some limnological characteristics in the south-eastern part of Lake Victoria, Tanzania. Aquat. Ecosyst. Health Manag. 2011, 14, 246–251. [Google Scholar] [CrossRef]
- Park, Y.S.; Lim, K.J.; Theller, L.; Engel, B.A. L-THIA GIS Manual. In Agricultural and Biological Engineering Departmental Report; Purdue University: West Lafayette, IN, USA, 2013. [Google Scholar]
- Li, T.; Bai, F.; Han, P.; Zhang, Y. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao’an District, Shenzhen, China. Environ. Manag. 2016, 58, 873–888. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wu, Z.; Han, Y.; Wu, Q.; Wang, Z.; Yang, Y. L-THIA based analysis on variations of the non-point source pollution load in Wenyu River basin. J. Saf. Environ. 2015, 15, 208–213. [Google Scholar]
- Behrouz, M.S.; Yazdi, M.N.; Sample, D.J. Using Random Forest, a machine learning approach to predict nitrogen, phos-phorus, and sediment event mean concentrations in urban runoff. J. Environ. Manag. 2022, 317, 115412. [Google Scholar] [CrossRef]
- Yue, Z.; Li, Y.; Zhou, Y.; Zheng, K.; Yu, S.; Wu, B. Analysis on the Source Tracing and Pollution Characteristics of Rainfall Runoff in the Old Urban Area of Nanning City. Environ. Sci. 2022, 43, 2018–2029. [Google Scholar]
- Zong, M.; Liu, M.; Li, C.; Hu, Y.; Wang, C. Assessment of the urban non-point source pollutant loads in the Central Liaoning Urban Agglomeration. Acta Ecol. Sin. 2022, 42, 10138–10149. [Google Scholar]
Flow | Calibration Period | Validation Period |
---|---|---|
0.69 | 0.70 | |
0.63 | 0.66 | |
3.62% | 21.2% |
Water Quality | TN | TP | ||
---|---|---|---|---|
Calibration Period | Validation Period | Calibration Period | Validation Period | |
0.69 | 0.78 | 0.89 | 0.79 | |
0.58 | 0.60 | 0.70 | 0.54 | |
3.07% | 29.15% | −6.08% | 35.02% |
SN | Parameters | Range Used for Calibration | Calibrated Value |
---|---|---|---|
1 | r_CN2.mgt | −0.5–0.5 | 0.006486 |
2 | v_ALPHA_BF.gw | 0–1 | 0.665686 |
3 | v_GW_DELAY.gw | 0–450 | 23.960186 |
4 | v_GWQMN.gw | 0–5000 | 1855.766602 |
5 | v_GW_REVAP.gw | 0–0.2 | 0.188482 |
6 | v_ESCO.hru | 0–1 | 0.627304 |
7 | r_SOL_AWC.sol | −0.5–0.5 | −0.347451 |
8 | r_SOL_K.sol | −0.5–0.5 | 0.149502 |
9 | v_EPCO.bsn | 0–1 | 0.958819 |
10 | v_CANMX.hru | 0–100 | 2.563845 |
11 | r_SOL_Z.sol | −0.5–0.5 | −0.098362 |
12 | v_NPERCO.bsn | 0–1 | 0.870255 |
13 | v_PPERCO.bsn | 10–17.5 | 15.154859 |
14 | v_ERORGP.hru | 0–5 | 0.654820 |
15 | v_PSP.bsn | 0.01–0.7 | 0.409556 |
Land Use Types | TN (t) | TN Contribution (%) | TP (t) | TP Contribution (%) |
---|---|---|---|---|
Cropland | 6535.95 | 50.28 | 2516.92 | 76.29 |
Shrubland | 2736.35 | 21.05 | 290.52 | 8.81 |
Grassland | 3691.06 | 28.40 | 466.11 | 14.13 |
Forest | 5.99 | 0.05 | 0.67 | 0.02 |
Urban land | 28.55 | 0.22 | 24.58 | 0.75 |
Total | 12,997.9 | 100 | 3298.8 | 100 |
Nutrient | Statistics | Cropland | Shrubland | Grassland | Forest | Urban Land |
---|---|---|---|---|---|---|
TN (mg/L) | Minimum | 6.96 | 4.51 | 4.38 | 0.00 | 1.46 |
Mean | 10.74 | 8.52 | 7.32 | 3.15 | 5.09 | |
Maximum | 23.97 | 18.48 | 19.48 | 14.59 | 14.69 | |
SD * | 3.26 | 3.10 | 3.00 | 3.71 | 2.44 | |
TP (mg/L) | Minimum | 2.42 | 0.43 | 0.47 | 0.00 | 1.01 |
Mean | 3.81 | 0.94 | 0.87 | 0.28 | 4.05 | |
Maximum | 7.33 | 3.21 | 2.20 | 1.71 | 8.72 | |
SD * | 0.96 | 0.55 | 0.35 | 0.37 | 1.52 |
EMC | TN (mg/L) | TP (mg/L) |
---|---|---|
Cropland | 4.4 | 1.3 |
Shrubland | 1.57 | 0.22 |
Pasture | 1.86 | 0.22 |
Forest | 1.57 | 0.22 |
Urban land | 1.86 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Chen, S.; Dai, Y.; Sekadende, B.; Kimirei, I.A. Integrated Application of SWAT and L-THIA Models for Nonpoint Source Pollution Assessment in Data Scarce Regions. Water 2024, 16, 800. https://doi.org/10.3390/w16060800
Zhang P, Chen S, Dai Y, Sekadende B, Kimirei IA. Integrated Application of SWAT and L-THIA Models for Nonpoint Source Pollution Assessment in Data Scarce Regions. Water. 2024; 16(6):800. https://doi.org/10.3390/w16060800
Chicago/Turabian StyleZhang, Peiyao, Shuang (Sophia) Chen, Ying Dai, Baraka Sekadende, and Ismael Aaron Kimirei. 2024. "Integrated Application of SWAT and L-THIA Models for Nonpoint Source Pollution Assessment in Data Scarce Regions" Water 16, no. 6: 800. https://doi.org/10.3390/w16060800
APA StyleZhang, P., Chen, S., Dai, Y., Sekadende, B., & Kimirei, I. A. (2024). Integrated Application of SWAT and L-THIA Models for Nonpoint Source Pollution Assessment in Data Scarce Regions. Water, 16(6), 800. https://doi.org/10.3390/w16060800