Flood Forecasting Method and Application Based on Informer Model
Abstract
:1. Introduction
2. Methodology
2.1. Development of the Approach
2.2. Deep Learning Models
2.2.1. ANN
2.2.2. Long Short-Term Memory
2.2.3. Informer
2.3. Model Application
2.4. Model Performance Measures
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Martina, M.L.V.; Todini, E.; Libralon, A. A Bayesian decision approach to rainfall thresholds based flood warning. Hydrol. Earth Syst. Sci. Discuss. 2006, 2, 413–426. [Google Scholar] [CrossRef]
- Bartholmes, J.C.; Thielen, J.; Ramos, M.H.; Gentilini, S. The european flood alert system EFAS-Part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol. Earth Syst. Sci. 2009, 13, 141–153. [Google Scholar] [CrossRef]
- Park, D.; Markus, M. Analysis of a changing hydrologic flood regime using the variable infiltration capacity model. J. Hydrol. 2014, 515, 267–280. [Google Scholar] [CrossRef]
- Qiao, G.C.; Yang, M.X.; Liu, Q. Monthly runoff forecast model of Danjiangkou Reservoir in autumn flood season based on PSO-SVRANN. Water Conserv. Hydropower Technol. 2021, 52, 69–78. [Google Scholar]
- Tan, Q.F.; Wang, X.; Wang, H.; Lei, X. Application comparison of ANN, ANFIS and AR models in daily runoff time series prediction. S. N. Water Transf. Water Conserv. Sci. Technol. 2016, 14, 12–17+26. [Google Scholar]
- Salas, J.D.; Markus, M.; Tokar, A.S. Streamflow forecasting based on artificial neural networks. Artif. Neural Netw. Hydrol. 2000, 36, 23–51. [Google Scholar]
- Tokar, A.S.; Johnson, P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4, 232–239. [Google Scholar] [CrossRef]
- Liu, H. Research on flood classification and prediction based on neural network and genetic algorithm. Water Resour. Hydro Power Technol. 2020, 51, 31–38. [Google Scholar]
- Li, D.Y.; Yao, Y.; Liang, Z.M.; Zhou, Y.; Li, B. Hydrological probability prediction method based on variable decibel Bayesian depth learning. Water Sci. Prog. 2023, 34, 9. [Google Scholar]
- Xu, Y.; Hu, C.; Wu, Q.; Jian, S.; Li, Z.; Chen, Y.; Zhang, G.; Zhang, Z.; Wang, S. Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. J. Hydrol. 2022, 608, 553. [Google Scholar] [CrossRef]
- Cui, Z.; Guo, S.L.; Wang, J.; Wang, H.; Yin, J.; Ba, H. Flood forecasting research based on GR4J-LSTM hybrid model. People Yangtze River 2022, 53, 1–7. [Google Scholar]
- Ouyang, W.Y.; Ye, L.; Gu, X.Z.; Li, X.Y.; Zhang, C. Review of the progress of in-depth study on hydrological forecasting II—Research progress and prospects. S. N. Water Transf. Water Conserv. Technol. 2022, 20, 862–875. [Google Scholar]
- Yin, H.; Wang, F.; Zhang, X.; Zhang, Y.; Chen, J.; Xia, R. Rainfall-runoff modeling using long short-term memory based step-sequence framework. J. Hydrol. 2022, 610, 901. [Google Scholar] [CrossRef]
- Li, B.; Tian, F.Q.; Li, Y.K.; Ni, G. Deep-learning hydrological model integrating temporal and spatial characteristics of meteorological elements. Prog. Water Sci. 2022, 33, 904–913. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. Neural Inf. Process. Syst. 2017, 5998, 008. [Google Scholar]
- Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C.A.; Bekas, C.; Lee, A.A. Molecular transformer: A model for uncertainty-calibrated chemical reaction prediction. ACS Cent. Sci. 2019, 5, 1572–1583. [Google Scholar] [CrossRef]
- Wang, W.; Xie, E.; Li, X.; Fan, D.-P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 548–558. [Google Scholar]
- Zhou, C.H.; Lin, P.Q. Traffic volume prediction method based on multi-channel transformer. Comput. Appl. Res. 2023, 40, 435–439. [Google Scholar]
- Dong, J.F.; Wan, X.; Wang, Y.; Ye, R.; Xiong, Z.; Fan, H.; Xue, Y. Short-term power load forecasting based on XGB-Transformer model. Power Inf. Commun. Technol. 2023, 21, 9–18. [Google Scholar]
- Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. Neural Inf. Process. Syst. 2019, 32. preprint. [Google Scholar]
- Liu, C.; Liu, D.; Mu, L. Improved transformer model for enhanced monthly streamflow predictions of the Yangtze River. IEEE Access 2022, 10, 58240–58253. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Zhang, S.H.; Peng, J.Q.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time series forecasting. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Virtual Event, 2–9 February 2021; AAAI: Menlo Park, CA, USA, 2021; pp. 11106–11115. [Google Scholar]
- Li, G.; Liu, Z.J.; Zhang, J.W.; Han, H.; Shu, Z.K. Bayesian model averaging by combining deep learning models to improve lake water level prediction. Sci. Total Environ. 2024, 906, 167718, ISSN 0048-9697. [Google Scholar] [CrossRef] [PubMed]
TM | PQJ1 | PQJ2 | PQJ3 | PQJ4 | PQJ5 | Xiashan | Julongtan | OT |
---|---|---|---|---|---|---|---|---|
17 May 2014 14:00 | 3.6 | 6.1 | 0.3 | 6.8 | 1.8 | 1000 | 422 | 1680 |
17 May 2014 20:00 | 0.3 | 4.2 | 1.3 | 1.1 | 2 | 1000 | 426 | 1690 |
18 May 2014 2:00 | 0.3 | 0.2 | 1.8 | 0 | 0.4 | 1000 | 426 | 1703 |
18 May 2014 8:00 | 7.4 | 4 | 0.2 | 4 | 1 | 1245 | 424 | 1723 |
18 May 2014 14:00 | 1.3 | 6 | 0 | 0.2 | 0.2 | 1191 | 424 | 1760 |
18 May 2014 20:00 | 6.7 | 13.1 | 2 | 10.9 | 3.2 | 1107 | 421 | 1813 |
Accuracy Metrics | Loss | Seq Len | ANN | LSTM | Informer |
---|---|---|---|---|---|
NSE | MAE | 4 | 0.487 | 0.407 | 0.675 |
5 | 0.492 | 0.500 | 0.639 | ||
6 | 0.416 | 0.436 | 0.522 | ||
MSE | 4 | 0.628 | 0.711 | 0.746 | |
5 | 0.476 | 0.473 | 0.643 | ||
6 | 0.494 | 0.304 | 0.665 | ||
Huber | 4 | 0.596 | 0.610 | 0.710 | |
5 | 0.641 | 0.665 | 0.719 | ||
6 | 0.672 | 0.715 | 0.744 | ||
R2 | MAE | 4 | 0.832 | 0.878 | 0.859 |
5 | 0.836 | 0.882 | 0.851 | ||
6 | 0.842 | 0.833 | 0.855 | ||
MSE | 4 | 0.847 | 0.895 | 0.873 | |
5 | 0.859 | 0.898 | 0.874 | ||
6 | 0.827 | 0.883 | 0.889 | ||
Huber | 4 | 0.857 | 0.832 | 0.858 | |
5 | 0.842 | 0.877 | 0.884 | ||
6 | 0.859 | 0.886 | 0.893 | ||
RMSE | MAE | 4 | 754 | 782 | 615 |
5 | 794 | 788 | 680 | ||
6 | 905 | 993 | 790 | ||
MSE | 4 | 723 | 591 | 571 | |
5 | 755 | 789 | 665 | ||
6 | 822 | 936 | 602 | ||
Huber | 4 | 789 | 704 | 590 | |
5 | 689 | 640 | 574 | ||
6 | 707 | 603 | 576 | ||
RE (%) | MAE | 4 | 15.3 | 18.8 | 12.5 |
5 | 17.9 | 17.2 | 13.4 | ||
6 | 21.1 | 20.9 | 19.5 | ||
MSE | 4 | 14.4 | 16.5 | 11.4 | |
5 | 18.5 | 16.9 | 16.9 | ||
6 | 16.6 | 20.1 | 14.3 | ||
Huber | 4 | 16.1 | 17.2 | 11.7 | |
5 | 17.5 | 15.9 | 13.5 | ||
6 | 16.2 | 14.8 | 12.5 |
Accuracy Metrics | Loss | Seq Len | ANN | LSTM | Informer |
---|---|---|---|---|---|
NSE | MAE | 4 | 0.689 | 0.672 | 0.822 |
5 | 0.652 | 0.566 | 0.743 | ||
6 | 0.656 | 0.594 | 0.684 | ||
MSE | 4 | 0.674 | 0.734 | 0.775 | |
5 | 0.628 | 0.473 | 0.765 | ||
6 | 0.632 | 0.587 | 0.705 | ||
Huber | 4 | 0.666 | 0.743 | 0.753 | |
5 | 0.612 | 0.747 | 0.792 | ||
6 | 0.636 | 0.736 | 0.757 | ||
R2 | MAE | 4 | 0.885 | 0.887 | 0.923 |
5 | 0.842 | 0.910 | 0.898 | ||
6 | 0.866 | 0.874 | 0.912 | ||
MSE | 4 | 0.863 | 0.910 | 0.916 | |
5 | 0.892 | 0.907 | 0.915 | ||
6 | 0.832 | 0.902 | 0.899 | ||
Huber | 4 | 0.869 | 0.909 | 0.917 | |
5 | 0.886 | 0.910 | 0.915 | ||
6 | 0.885 | 0.905 | 0.906 | ||
RMSE | MAE | 4 | 575 | 560 | 449 |
5 | 597 | 662 | 513 | ||
6 | 612 | 604 | 540 | ||
MSE | 4 | 655 | 591 | 473 | |
5 | 667 | 789 | 479 | ||
6 | 692 | 655 | 512 | ||
Huber | 4 | 753 | 521 | 512 | |
5 | 711 | 507 | 470 | ||
6 | 759 | 517 | 497 | ||
RE (%) | MAE | 4 | 16.6 | 12.6 | 9.9 |
5 | 17.5 | 16.2 | 10.2 | ||
6 | 17.1 | 13.4 | 12.2 | ||
MSE | 4 | 15.9 | 16.5 | 11.3 | |
5 | 16.1 | 16.9 | 11.4 | ||
6 | 17.5 | 15.8 | 11.2 | ||
Huber | 4 | 17.5 | 11.9 | 14.4 | |
5 | 17.7 | 11.8 | 10.7 | ||
6 | 14.6 | 12.0 | 10.5 |
Accuracy Metrics | Loss | Seq Len | ANN | LSTM | Informer |
---|---|---|---|---|---|
Flood peak difference values less than 15% | MAE | 4 | 18 | 23 | 19 |
5 | 15 | 18 | 15 | ||
6 | 17 | 17 | 24 | ||
MSE | 4 | 14 | 15 | 17 | |
5 | 14 | 13 | 17 | ||
6 | 15 | 12 | 21 | ||
Huber | 4 | 13 | 15 | 13 | |
5 | 12 | 13 | 16 | ||
6 | 15 | 13 | 21 | ||
Total flood difference less than 15% | MAE | 4 | 19 | 17 | 23 |
5 | 19 | 17 | 22 | ||
6 | 17 | 14 | 20 | ||
MSE | 4 | 19 | 15 | 22 | |
5 | 15 | 12 | 21 | ||
6 | 19 | 12 | 21 | ||
Huber | 4 | 14 | 14 | 16 | |
5 | 11 | 11 | 21 | ||
6 | 13 | 15 | 21 | ||
NSE more than 0.8 | MAE | 4 | 14 | 14 | 18 |
5 | 15 | 16 | 17 | ||
6 | 16 | 13 | 19 | ||
MSE | 4 | 14 | 11 | 18 | |
5 | 13 | 8 | 18 | ||
6 | 14 | 12 | 18 | ||
Huber | 4 | 15 | 15 | 16 | |
5 | 13 | 10 | 19 | ||
6 | 11 | 12 | 20 | ||
Max flood peak gap (%) | MAE | 4 | 34.5 | 38.3 | 30.7 |
5 | 36.7 | 27.4 | 31.5 | ||
6 | 35.1 | 33.8 | 30.4 | ||
MSE | 4 | 47.3 | 57.2 | 35.1 | |
5 | 39.4 | 36.3 | 35.1 | ||
6 | 42.1 | 49.2 | 32.7 | ||
Huber | 4 | 49.7 | 61.0 | 37.7 | |
5 | 42.4 | 45.3 | 29.7 | ||
6 | 43.8 | 45.6 | 27.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Zhao, J.; Wan, B.; Cai, J.; Wan, J. Flood Forecasting Method and Application Based on Informer Model. Water 2024, 16, 765. https://doi.org/10.3390/w16050765
Xu Y, Zhao J, Wan B, Cai J, Wan J. Flood Forecasting Method and Application Based on Informer Model. Water. 2024; 16(5):765. https://doi.org/10.3390/w16050765
Chicago/Turabian StyleXu, Yiyuan, Jianhui Zhao, Biao Wan, Jinhua Cai, and Jun Wan. 2024. "Flood Forecasting Method and Application Based on Informer Model" Water 16, no. 5: 765. https://doi.org/10.3390/w16050765
APA StyleXu, Y., Zhao, J., Wan, B., Cai, J., & Wan, J. (2024). Flood Forecasting Method and Application Based on Informer Model. Water, 16(5), 765. https://doi.org/10.3390/w16050765