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Abstract: Flood forecasting helps anticipate floods and evacuate people, but due to the access of a
large number of data acquisition devices, the explosive growth of multidimensional data and the
increasingly demanding prediction accuracy, classical parameter models, and traditional machine
learning algorithms are unable to meet the high efficiency and high precision requirements of
prediction tasks. In recent years, deep learning algorithms represented by convolutional neural
networks, recurrent neural networks and Informer models have achieved fruitful results in time
series prediction tasks. The Informer model is used to predict the flood flow of the reservoir. At the
same time, the prediction results are compared with the prediction results of the traditional method
and the LSTM model, and how to apply the Informer model in the field of flood prediction to improve
the accuracy of flood prediction is studied. The data of 28 floods in the Wan’an Reservoir control
basin from May 2014 to June 2020 were used, with areal rainfall in five subzones and outflow from
two reservoirs as inputs and flood processes with different sequence lengths as outputs. The results
show that the Informer model has good accuracy and applicability in flood forecasting. In the flood
forecasting with a sequence length of 4, 5 and 6, Informer has higher prediction accuracy, and the
prediction accuracy is better than other models under the same sequence length, but the prediction
accuracy will decline to a certain extent with the increase in sequence length. The Informer model
stably predicts the flood peak better, and its average flood peak difference and average maximum
flood peak difference are the smallest. As the length of the sequence increases, the number of
fields with a maximum flood peak difference less than 15% increases, and the maximum flood peak
difference decreases. Therefore, the Informer model can be used as one of the better flood forecasting
methods, and it provides a new forecasting method and scientific decision-making basis for reservoir
flood control.

Keywords: flood forecasting; seq length; LSTM; Informer

1. Introduction

Our country is one of the countries with frequent flood disasters; different types and
different degrees of floods may happen on about two-thirds of the land area. According
to the statistics of the National Center for Disaster Reduction under the Ministry of Water
Resources and the Ministry of Emergency Management, from 1991 to 2020, the number
of people killed or missing due to floods in China reached 2020, with a total of more than
60,000 deaths. Therefore, we need to predict the flood flow of the reservoir according to
the information of rainfall and flow in the upstream of the basin through a time series
prediction, so as to give early warning and try to avoid safety accidents caused by sudden
flood peaks [1,2]. In the past, hydrological models were generally used, but these models
required a lot of parameters, such as temperature, soil moisture, soil type, slope, terrain,
etc., and different parameters also contained very complex relationships [3]. In recent
years, machine learning technology has developed rapidly, and many researchers have
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found that its efficient data parallel processing ability can be applied to the field of flood
prediction [4,5].

The Artificial Neural Network (ANN), one of the data-driven techniques, has been
widely used in hydrology as an alternative to physical-based and conceptual models [6,7].
Liu Heng et al. [8] proposed a flood classification forecast model, which greatly improved
the forecast accuracy. Li Dayang et al. [9] proposed the VBLSTM model combining Stochas-
tic Variational Inference (SVI) and Long Short-Term Memory (LSTM) and these experiments
found that the prediction accuracy is higher than that of traditional hydrological models.
XU et al. [10] proposed to use Particle Swarm Optimization (PSO) to optimize LSTM hy-
perparameters for flood prediction tasks in Fenhe Jingle Basin and Luohe Luoshi Basin,
improving the accuracy of the LSTM model for flood prediction. Cui Zhen et al. [11]
constructed a mixed model of GR4J (modele du Genie Rural a4 parametres Journalier) and
LSTM based on the conceptual hydrological model to forecast the inflow of a land water
reservoir. The results show that GR4J-LSTM has a better flood forecasting performance
than a single model. Compared with traditional hydrological models and shallow machine
learning models [12–14], machine learning models show superior performance in flood
prediction.

The Transformer model [15] proposed in 2017 supports parallel computing, is faster to
train, can simultaneously model long-term and short-term dependencies and has shown
good results in processing temporal data series [16,17]. In order to better realize the
time series prediction under different tasks, scholars in related fields have improved it
in many ways. For example, The MCST-Transformer [18] (Multi-channel spatiotemporal
Transformer) is used to predict the traffic flow, the XGB-Transformer (Gradient Boosting
Decision) Tree transformer model [19] has been used for power load prediction, solving the
problem of the Transformer model being insensitive to local information in time series pre-
diction tasks [20], and the Transformer-based dual encoder model is used for the prediction
of the monthly runoff of the Yangtze River [21].

However, Transformers have three problems: high computational complexity, large
memory usage, and low prediction efficiency. In 2021, Zhou [22] from Beihang University
proposed the Informer model based on the classic Transformer encoder–decoder structure
to solve these problems to some extent. In this study, the data collection interval was long,
and the Informer model was used for the prediction and then compared with other models.

The main objectives of this experiment are as follows: (1) Build three deep learning
models (ANN, LSTM, and Informer) for flood flow prediction and compare their prediction
results under different prediction time periods (seq len = 4, 5, 6) and loss functions (MAE,
MSE, and Huber). (2) Further improve the accuracy and reliability of flood flow prediction
and the quality of prediction results which will be quantified by four statistical indicators
(NSE, R2, RMSE, and RE).

2. Methodology

In the past, we have generally used ANN and LSTM models for flood prediction, but
their prediction accuracy is not high and the calculation takes a lot of time. If the data span
a long time and the network is very deep, the calculation will be large and time-consuming.
Therefore, we use the Informer model for flood prediction, which has a higher prediction
accuracy and takes less time.

2.1. Development of the Approach

Figure 1 shows the process of the reservoir flood discharge prediction method. Firstly,
the flood discharge data of Wan’an Reservoir over the years were collected and pre-
processed, including dividing the data into a training set (70%) and a prediction set (30%).
Then data normalization is carried out, and the flood flow prediction is realized by using
the three models of ANN, LSTM, and Informer. NSE, RMSE, R2, and RE were calculated
as evaluation criteria according to the flood flow prediction results. At the same time, the
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number of flood fields with flood peak gap less than 15%, total flood gap 15%, NSE greater
than 0.8, and the maximum flood peak difference were counted as reference.
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2.2. Deep Learning Models
2.2.1. ANN

Artificial Neural Network (ANN) is a powerful tool for dealing with machine learning
problems in the computer field. It is widely used in regression and classification problems.
It simulates the operation principle of biological nerve cells and forms a network structure
of artificial neurons with hierarchical relationship and connection relationship. By means of
mathematical expression, the signal transmission between neurons can be simulated, so as
to establish a nonlinear equation with input and output relationship, and can be visualized
through the network; we call it artificial neural network. Generally speaking, ANN can
fit any nonlinear function through reasonable network structure configuration, so it can
also be used to deal with nonlinear systems or black box models with complex internal
expression.

2.2.2. Long Short-Term Memory

The LSTM network is a modified recurrent neural network proposed by Hochreiter
and Schmidhuber. In recent years, the research on sequence prediction problem mainly
focuses on the prediction of short sequences. LSTM network is used to conduct experiments
on a set of data for short time series (12 data points, 0.5 days of data) and long time series
(480 data points, 20 days of data). The results show that with the increase in sequence length,
the prediction error increases significantly, and the prediction speed decreases sharply. And
LSTM models have several serious problems: high prediction error—when dealing with
long time series data, the prediction error of LSTM model is high, which makes it perform
unsatisfactorily in some application scenarios; slow prediction speed—the LSTM model
has a relatively slow prediction speed, which is mainly caused by its internal complex
calculation process; more model parameters—the LSTM model has more parameters to
train, which makes it require more computing resources and time when dealing with
large-scale data; and prone to mode switching—when dealing with non-stationary time
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series data, the LSTM model is prone to mode switching, which will lead to instability of
the model prediction results.

2.2.3. Informer

Recent studies have shown that compared with RNN-type models, Transformers show
high potential in the expression of long-distance dependencies. However, Transformers
have the following three problems: the quadratic computational complexity of self-attention
mechanism—the time complexity and memory usage of each layer due to the dot product
operation of self-attention mechanism; high memory usage problem—when stacking long
sequence inputs, the stack of J encoder–decoder layers makes the total memory usage
high, which limits the scalability of the model when accepting long sequence inputs;
and efficiency in predicting long-term outputs—the dynamic decoding process of the
Transformer, where the output comes one after another, and the subsequent output depends
on the prediction of the previous time step, results in very slow inference.

The authors of Informer target Transformer models with the following goal: can
Transformer models be improved to be more computationally, memory, and architecturally
efficient while maintaining higher predictive power? To achieve these goals, this paper
designs an improved Transformer-based LSTF model, namely Informer model, which has
three notable features: a ProbSpare self-attention mechanism, which can achieve a low
degree of time complexity and memory usage; in the self-attention distillation mechanism,
a Conv1D is set on the results of each attention layer, and a Maxpooling layer is added
to halve the output of each layer to highlight the dominant attention, and effectively deal
with too long input sequences; and the parallel generative decoder mechanism outputs
all prediction results for a long time sequence instead of predicting in a stepwise manner,
which greatly improves the inference speed of long sequence prediction in Figure 2.
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Figure 2. Conceptual diagram of Informer.

The model belongs to the Encoder–Decoder structure, in which the self-attention
distillation mechanism is located in the Encoder layer. This operation essentially consists of
several encoders and aims to extract stable long-term features. The network depth of each
Encoder gradually decreases, and the length of the input data also decreases, and finally,
the features extracted by all encoders are concatenated. It should be noted that in order
to distinguish encoders from each other, the authors gradually decrease the depth of each
branch by determining the number of repetitions of the self-attention mechanism of each
branch. At the same time, in order to ensure the size of the data to be merged, each branch
only takes the second half of the input value of the previous branch as input.

The self-attention distillation mechanism is an efficient method to improve the effi-
ciency and accuracy of the model by training a smaller model to guide the learning of
a larger model. The core idea of the self-attention distillation mechanism is to use the
attention distribution of the large model to guide the training of the small model when
training the small model, so that the small model can better imitate the large model.



Water 2024, 16, 765 5 of 15

The principle of the self-attention distillation mechanism is that it captures the global
characteristics of the input data by computing the attention distribution of the input data.
Then, these features are passed to the small model so that the small model can better imitate
the large model.

The generative Decoder is located in the Decoder layer. In the past time series pre-
diction, it was often necessary to perform multi-step prediction separately to obtain the
prediction results of several future time points. However, with the continuous increase of
the prediction length, the cumulative error will become larger and larger, resulting in the
lack of practical significance of long-term prediction. In this paper, the authors propose a
generative decoder to obtain the sequence output, which only requires a single derivation
process to obtain the prediction result of the desired target length, effectively avoiding the
accumulation of error diffusion during multi-step prediction.

Another innovation is the probabilistic sparse self-attention mechanism, which is
proposed from the author’s thinking about the feature map of the self-attention mechanism.
The authors visualize Head1 and Head7 of the first layer of self-attention mechanism and
find that there are only a few bright stripes in the feature map. At the same time, a small part
of the scores of the two heads have large values, which is consistent with the distribution
characteristics of long-tailed data, as shown in the figure above. The conclusion is that
a small fraction of the dot product pairs contributes the main attention, while the others
can be ignored. According to this characteristic, the authors focus on the high-scoring
dot product pairs, trying to calculate only the high-scoring parts in each operation of the
self-attention module, so as to effectively reduce the time and space cost of the model. It
allows the model to automatically capture the relationship between the individual elements
of the input sequence, so as to better understand the input sequence. This mechanism
enables the model to process all elements of the input sequence in parallel, avoiding the
problem of computational order dependence in sequence models such as RNN/LSTM, and
thus processing more efficiently.

2.3. Model Application

The water flow data of Wan’an Reservoir is used as the dataset for prediction. The dam
site of Wan’an Reservoir is located 2 km upstream of Furong Town, Wan’an County, Jiangxi
Province. The upstream is 90 km away from Ganzhou City and the downstream is 90 km
away from Ji’an City, and the control basin area is 36,900 square kilometers, as seen in Figure 3.

There are several hydrological stations and rainfall stations in the basin of Wan’an
Reservoir. In this paper, the rainfall information of five regions around the reservoir (PQJ1,
PQJ2, PQJ3, PQJ4, and PQJ5) and the flow information of Xiashan hydrological Station
and Julongtan hydrological station are selected to predict the flow of Wan’an Reservoir. In
total, 1176 precipitation and discharge data were collected from a total of 28 floods in the
region from 17 May 2014, to 14 June 2020, and the collection interval was 6 h. Some of the
collected datasets are shown in Table 1.

Table 1. Dataset of Wan’an reservoir.

TM PQJ1 PQJ2 PQJ3 PQJ4 PQJ5 Xiashan Julongtan OT

17 May 2014 14:00 3.6 6.1 0.3 6.8 1.8 1000 422 1680

17 May 2014 20:00 0.3 4.2 1.3 1.1 2 1000 426 1690

18 May 2014 2:00 0.3 0.2 1.8 0 0.4 1000 426 1703

18 May 2014 8:00 7.4 4 0.2 4 1 1245 424 1723

18 May 2014 14:00 1.3 6 0 0.2 0.2 1191 424 1760

18 May 2014 20:00 6.7 13.1 2 10.9 3.2 1107 421 1813

Note: In the above table, TM is the record time, PQJ1, PQJ2, PQJ3, PQJ4, and PQJ5 are the rainfall information
of the five rainfall stations in the reservoir area, Xiashan and Julongtan are the discharge information of the
two discharge stations in the reservoir area, and OT is the actual discharge of Wan’an Reservoir.
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Due to the noise and jitter of the initial data, the smooth function is used to smooth
the data, and the value at time t after processing is the average value at time t − 1, t, and
t + 1. In addition, the flow at the flood peak needs to be recorded, so the flow at the flood
peak is not smoothed.

In this experiment, considering the long sampling time, the seq length is set to 4, 5,
and 6, and the output length is 1, respectively. When the seq length is 4, four pieces of data
are used to predict one piece of data in the future.

The normalization method uses max–min normalization.
The commonly used loss functions in machine learning regression problems include

mean absolute error (MAE), mean square error (MSE), and Huber Loss. MSE loss usually
converges faster than MAE, but MAE loss is more robust to outliers, that is, less susceptible
to outliers. Huber Loss is a Loss function that combines MSE and MAE and takes the
advantages of both, also known as Smooth Mean Absolute Error Loss. The principle is
simple: MSE is used when the error is close to 0 and MAE is used when the error is large.

In this paper, more attention is paid to the peak flood flow since it has the greatest
impact on reality, and MAE, MSE, and Huber Loss functions are used in this experiment to
compare the prediction effect.

In the predictions of the two models, the common parameters are learning rate, training
epochs, patience, and batch size which is 0.0005, 100, 10, and 10 respectively.

All numerical experiments in this study were implemented on a Windows system
(CPU: Intel i7-12700H (Intel, Santa Clara, CA, USA), GPU: NVIDIA GeForce RTX 3070
(NVIDIA, Santa Clara, CA, USA) using Python (3.9) based on the Pytorch (1.8.0)).

2.4. Model Performance Measures

Four indicators are finally used to measure the prediction results, namely NSE (Nash
coefficient), R2 (determination coefficient), RMSE (mean square error), and RE (mean
difference).

Four hydrological concepts were used to measure the prediction results, namely, the
number of fields with the peak discharge gap being less than 0.15, the number of fields with
the total flood gap being less than 0.15, the number of fields with the Nash coefficient greater
than 0.8, and the maximum flood peak gap. The calculation formulae [23] are as follows:

NSE = 1 − ∑n
i=1(yi − xi)

2

∑n
i−1(xi − x)2 (1)
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R2 =
[∑n

i=1 (xi − x)(yi − y)]2

∑n
i=1(xi − x)2∑n

i=1(yi − y)2 (2)

RMSE =

√
∑n

i=1(yi − xi)
2

n
(3)

RE =
∑n

i=1 yi − ∑n
i=1 xi

∑n
i=1 xi

(4)

where xi and yi are observed and simulated values, respectively; x and y are average
observed and simulated values, respectively; and n is the number of samples.

NSE (Nash coefficient): It is used to verify the quality of hydrological model simulation
results. The value of NSE is negative infinity to 1, and NSE is close to 1, indicating that the
model quality is good.

R2 (Coefficient of Determination): The proportion that reflects the total variation of the
dependent variable can be explained by the independent variable through the regression
relationship. It ranges from 0 to 1. The greater the coefficient of determination, the better
the prediction effect.

RMSE (mean square error): The square root of the ratio between the squared deviation
of the predicted value from the true value and the number of observations. It tells you how
discrete a dataset is.

RE (mean difference): the ratio of the absolute error caused by a measurement to the
measured (agreed) true value multiplied by 100%, which reflects the confidence of the
measurement.

Peak discharge: The maximum instantaneous discharge in a flood discharge process,
that is, the highest discharge on the flood process line. It may be the measured value, or
it may be the calculated value using the water–flow relationship curve or the calculation
value of the hydrodynamic formula.

Total flood water: The total amount of flood water flowing from the outlet section of
the basin in a certain period of time. The total amount of a flood caused by rainfall is often
calculated in the forecast of rainfall runoff, which can be obtained from the area between
the beginning time of the flood flow and the end time on the retreating section of the flood
process line.

3. Result

Using thirty percent of the data as the prediction set, the different seq lengths and
prediction accuracy metrics based on the loss types (MAE, MSE, and Huber) of the three
deep learning models (ANN, LSTM, and Informer) are shown in Table 2.

Table 2. Wan’an reservoir forecast results table (prediction set).

Accuracy Metrics Loss Seq Len ANN LSTM Informer

NSE

MAE

4 0.487 0.407 0.675

5 0.492 0.500 0.639

6 0.416 0.436 0.522

MSE

4 0.628 0.711 0.746

5 0.476 0.473 0.643

6 0.494 0.304 0.665

Huber

4 0.596 0.610 0.710

5 0.641 0.665 0.719

6 0.672 0.715 0.744
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Table 2. Cont.

Accuracy Metrics Loss Seq Len ANN LSTM Informer

R2

MAE

4 0.832 0.878 0.859

5 0.836 0.882 0.851

6 0.842 0.833 0.855

MSE

4 0.847 0.895 0.873

5 0.859 0.898 0.874

6 0.827 0.883 0.889

Huber

4 0.857 0.832 0.858

5 0.842 0.877 0.884

6 0.859 0.886 0.893

RMSE

MAE

4 754 782 615

5 794 788 680

6 905 993 790

MSE

4 723 591 571

5 755 789 665

6 822 936 602

Huber

4 789 704 590

5 689 640 574

6 707 603 576

RE (%)

MAE

4 15.3 18.8 12.5

5 17.9 17.2 13.4

6 21.1 20.9 19.5

MSE

4 14.4 16.5 11.4

5 18.5 16.9 16.9

6 16.6 20.1 14.3

Huber

4 16.1 17.2 11.7

5 17.5 15.9 13.5

6 16.2 14.8 12.5
Note: In Table 2, “0.675” means that in a certain condition (Loss = MAE, seq len = 4), the NSE of the Informer
model is 0.675. The best results of the three models are marked in red. Larger NSE and R2 are better. Smaller
RMSE and RE are better.

In addition, considering that this study is application-oriented, the trained model is
used to predict all datasets, and the results are obtained and compared with the original
data, as shown in Table 3. The best results of the three models are marked in red.

The numbers of the following four indicators are shown in Table 4: flood peak differ-
ence values less than 15%, total flood difference less than 15%, NSE more than 0.8, a max
flood peak gap. Bigger is better for the first three metrics, and smaller is better for the last
one. The best results of the three models are marked in red.
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Table 3. Wan’an reservoir forecast results table (all data).

Accuracy Metrics Loss Seq Len ANN LSTM Informer

NSE

MAE

4 0.689 0.672 0.822

5 0.652 0.566 0.743

6 0.656 0.594 0.684

MSE

4 0.674 0.734 0.775

5 0.628 0.473 0.765

6 0.632 0.587 0.705

Huber

4 0.666 0.743 0.753

5 0.612 0.747 0.792

6 0.636 0.736 0.757

R2

MAE

4 0.885 0.887 0.923

5 0.842 0.910 0.898

6 0.866 0.874 0.912

MSE

4 0.863 0.910 0.916

5 0.892 0.907 0.915

6 0.832 0.902 0.899

Huber

4 0.869 0.909 0.917

5 0.886 0.910 0.915

6 0.885 0.905 0.906

RMSE

MAE

4 575 560 449

5 597 662 513

6 612 604 540

MSE

4 655 591 473

5 667 789 479

6 692 655 512

Huber

4 753 521 512

5 711 507 470

6 759 517 497

RE (%)

MAE

4 16.6 12.6 9.9

5 17.5 16.2 10.2

6 17.1 13.4 12.2

MSE

4 15.9 16.5 11.3

5 16.1 16.9 11.4

6 17.5 15.8 11.2

Huber

4 17.5 11.9 14.4

5 17.7 11.8 10.7

6 14.6 12.0 10.5
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Table 4. Four indicators of Wan’an reservoir prediction results table (all data).

Accuracy Metrics Loss Seq Len ANN LSTM Informer

Flood peak
difference values less

than 15%

MAE

4 18 23 19

5 15 18 15

6 17 17 24

MSE

4 14 15 17

5 14 13 17

6 15 12 21

Huber

4 13 15 13

5 12 13 16

6 15 13 21

Total flood difference
less than 15%

MAE

4 19 17 23

5 19 17 22

6 17 14 20

MSE

4 19 15 22

5 15 12 21

6 19 12 21

Huber

4 14 14 16

5 11 11 21

6 13 15 21

NSE more than 0.8

MAE

4 14 14 18

5 15 16 17

6 16 13 19

MSE

4 14 11 18

5 13 8 18

6 14 12 18

Huber

4 15 15 16

5 13 10 19

6 11 12 20

Max flood peak gap
(%)

MAE

4 34.5 38.3 30.7

5 36.7 27.4 31.5

6 35.1 33.8 30.4

MSE

4 47.3 57.2 35.1

5 39.4 36.3 35.1

6 42.1 49.2 32.7

Huber

4 49.7 61.0 37.7

5 42.4 45.3 29.7

6 43.8 45.6 27.4

4. Discussion

In Tables 2 and 3, the best prediction results of the three models are marked in red,
and the best prediction results are based on the statistical results of the Informer. The result
with the highest NSE (Nash coefficient) is selected, that is, the seq length is four and the
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loss function is MAE. Two floods (No. 1 and No. 2) are selected to draw the rainfall flow
diagram, see Figures 4 and 5.
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From Figures 4 and 5, it can be found that the predicted flood process line has a
high degree of agreement with the actual flood process, and compared with the flood
peak of Xiashan and Julongtan, the flood peak is lagged behind, which better reflects the
spatiotemporal information of the flood.

According to Table 2, 30% of the data are taken as the prediction set. For four statis-
tical indicators (NSE, R2, RMSE, and RE), the average value of three different seq length
predictions is taken as the result to draw the bar chart, as shown in Figure 6, the horizontal
axis is the three loss functions, and the vertical axis is the average value of the indicators.
(a), (b), (c), and (d) are bar charts of the four indicators, respectively. Larger values of NSE
and R2 lead to better results, while smaller values of RMSE and RE lead to better results.
We can find from Figure 6 that the Informer has better NSE, RMSE, and RE, and similar R2

compared with ANN and LSTM.
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According to Table 3, all datasets are used for prediction, and the bar charts of the
four indicators are shown in Figure 7. a–d are bar charts of the four indicators, respectively.
We can find from Figure 7 that the Informer has better NSE, RMSE, RE, and R2 compared
with ANN and LSTM.
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According to Table 4, a table is made for each hydrological indicator. The average of
the three different sequence length predictions is taken as the result to draw a bar graph,
as shown in Figure 8. The horizontal axis shows the three different loss functions, and
the vertical axis shows the number of flood fields or the maximum flood peak difference
satisfying the hydrological index in the 28 floods. (a), (b), (c), and (d) are bar charts of the
four indicators, respectively. Among them, a larger number of flood fields satisfying the
conditions indicates a better result, and a smaller maximum flood peak difference indicates
a better result. We can find from Figure 8 that the four indicators (a flood peak difference
values less than 15%, a total flood difference less than 15%, NSE more than 0.8, a max flood
peak gap) of the Informer are better than ANN and LSTM.
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Figure 8. Histogram of hydrographic indicators bar chart. (a) flood peak difference values less than
15%, (b) total flood difference less than 15%, (c) NSE more than 0.8, (d) max flood peak gap.
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5. Conclusions

In this study, the Informer model and traditional hydrology methods were combined to
study the effect of the ANN, LSTM, and Informer models in predicting the flood discharge
of the Wan’an Reservoir, and NSE, RMSE, R2, and RE were used to evaluate the accuracy
and reliability of the prediction, all of which showed satisfactory results. Therefore, using
a machine learning method to predict flood flow is reliable. The results show that the
Informer is superior to ANN and LSTM in most cases.

The R2 of the LSTM model is better than the Informer model, except for in three
cases (loss = MAE, seq length = 4), (loss = MAE, seq length = 5), and (loss = MSE, seq
length = 4). In other cases, the statistical indicators of the Informer model are better than
the other two models. However, when predicting with the full dataset, the R2 of the LSTM
model (los = MAE, seq length = 5) is better than that of the Informer model in both cases
(loss = MSE, seq length = 6). In one case (loss = Huber, seq length = 5), the LSTM model has
better RE than the Informer model, and in the remaining cases, the Informer model predicts
the best result. In terms of hydrological indicators, LSTM outperforms the Informer in
three cases, ANN outperforms the Informer in four cases, and the Informer predicts better
in the remaining cases. Therefore, we can conclude that the Informer performs better than
the ANN and LSTM models in predicting the Wan’an reservoir.

According to Figures 6–8, we can get the final conclusion that the average values of
the four indicators (NSE, R2, RMSE, and RE) of the Informer model are better than those of
ANN and LSTM under nine different conditions.

However, we find that the Informer model still has the following two problems:
although the prediction accuracy is higher than ANN and LSTM, there is still the possibility
of improvement; the three indicators, NSE, MSE, and RE, of the Informer are better than the
other two models, but the R2 of the three models are similar. Recently, the diffusion model
has become popular, which works by iteratively adding noise to an image and then training
a neural network to learn the noise and recover the image. It is widely used in the fields of
time series data prediction and images like CSDI and GLIDE. My next research direction is
to combine the diffusion model and the Informer, and use the powerful generation ability
of the diffusion model and the powerful computing power of the Informer to improve the
prediction accuracy and get better results.
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