Development of Daily Flow Expansion Regression and Web GIS-Based Pollutant Load Evaluation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Development of Daily Flow Expansion System at 8-Day Interval Measurement Stations
2.2.1. Selection of Monitoring Stations for 8-Day Intervals and Daily Flow Measurement and Development of Regression Equation
2.2.2. Validation of the Correlation between Monitoring Stations for 8-Day Interval and Daily Flow Measurement
2.2.3. Comparison of the Expanded Daily Flow Using Machine Learning and Specific Discharge Measurement Method
2.2.4. Development of Periodic Updating System for Daily Flow Expansion
2.3. Pollutant Load Evaluation Methods
2.3.1. Flow Duration Curve(FDC)/Load Duration Curve (LDC)
2.3.2. Q-L Rating Curve
2.4. Development of the Web GIS-Based Pollutant Load Evaluation System
3. Results
3.1. Derivation of Daily Flow Expansion Regression Equation
3.1.1. Analysis of Learning Effect Using Machine Learning
3.1.2. Results of Selection of Daily Flow Stations Affiliated with TMDL Stations and Development of Regression Equations
3.1.3. Verification of Daily Flow Expansion Equations
3.1.4. Evaluation of the Results of Daily Flow Expansion by Machine Learning and the Specific Discharge Measurement Method
3.1.5. Periodic Updating System Establishment for the Daily Flow Expansion Equations
3.2. Development of Web GIS-Based Pollutant Load Evaluation System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elshorbagy, A.; Ramesh, S.V.; Lindell, O. Total Maximum Daily Load (TMDL) Approach to Surface Water Quality Management: Concepts, Issues, and Applications. Can. J. Civ. Eng. 2005, 32, 442–448. [Google Scholar] [CrossRef]
- Mostaghimi, S.; Benham, B.; Brannan, K.; Dillaha, T.; Wynn, J.; Yagow, G.; Zeckoski, R. Total Maximum Daily Load Development for Lincille Creek: Bacteria and General Standard (Benthic) Impairments. Biol. Syst. Eng. Dep. Va. Tech Blacksbg. Va. 2003. Available online: http://www.deq.state.va.us/tmdl/tmdlrpts.html (accessed on 18 February 2024).
- Cleland, B. TMDL Development from the “Bottom Up”—Part II: Using Duration Curves to Connect the Pieces. America’s Clean Water Foundation. In Proceedings of the National TMDL Science and Policy 2002—WEF Specialty Conference, Phoenix, AZ, USA, 15 August 2002. [Google Scholar]
- Kim, J.G.; Engel, B.A.; Park, Y.S.; Theller, L.; Chaubey, I.; Kong, D.S.; Lim, K.J. Development of Web-based Load Duration Curve system for analysis of total maximum daily load and water quality characteristics in a waterbody. J. Environ. Manag. 2012, 97, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment (MOE). Total Maximum Daily Loads Handbook; GP2019-010; Ministry of Environment (MOE), National Institute of Environmental Research (NIER): Sejong, Republic of Korea, 2019; pp. 1–69. (In Korean)
- Cheong, E.J.; Kim, H.T.; Kim, Y.S.; Shin, D.S. Application of the Load Duration Curve (LDC) to Evaluate the Rate of Achievement of Target Water Quality in the Youngsan·Tamjin River Watersheds. J. Korean Soc. Water Environ. 2016, 32, 349–356. (In Korean) [Google Scholar] [CrossRef]
- Park, J.D.; Oh, S.Y. Methodology for the Identification of Impaired Waters Using LDC for the Management of Total Maximum Daily Loads. J. Korean Soc. Water Environ. 2012, 28, 693–703. (In Korean) [Google Scholar]
- Park, J.D.; Park, J.H.; Oh, S.Y.; Ahn, G.H.; Choi, Y.H. Development of Long Term Flow Duration Curves for the Management of TMDLs. Natl. Inst. Environ. Res. (NIER) NEIR-RP 2012, 220, 1–37. (In Korean) [Google Scholar]
- Hwang, H.S.; Yoon, C.G.; Kim, J.T. Application Load Duration Curve for Evaluation of Impaired Watershed at TMDL Unit Watershed in Korea. J. Korean Soc. Water Qual. 2010, 26, 903–909. (In Korean) [Google Scholar]
- Jung, J.; Cho, S.; Lim, B.; Oh, T.; Ham, S.; Kim, K. Evaluation of the Possibility of Daily Flow Data Generation from 8-Day Interval Measured Flow Data using SWAT-CUP. J. Korean Soc. Water Environ. 2012, 28, 595–600. (In Korean) [Google Scholar]
- Kang, H.W.; Ryu, J.C.; Choi, J.W.; Moon, J.P.; Choi, J.D.; Lim, K.J. Enhancement and Application of SWAT Auto-Calibration using Korean Ministry of Environment 8-Day Interval Flow/Water Quality data. J. Korean Soc. Water Environ. 2012, 28, 247–254. (In Korean) [Google Scholar]
- Kim, S.; Kang, D.K.; Kim, M.S.; Shin, H.S. The Possibility of Daily Flow Data Generation from 8-Day Intervals Measured Flow Data for Calibrating Watershed Model. J. Korean Soc. Water Environ. 2007, 23, 64–71. (In Korean) [Google Scholar]
- National Institute of Environment Research (NIER). The Study on the Optimum Assessment Methods for Achievement of Target Water Quality and Estimation of Allocation Loads Using a Dynamic Model. Natl. Inst. Environ. Res. NIER-RP 2013, 274, 1–31. (In Korean) [Google Scholar]
- Baek, K.O.; Yim, D.H. Extension techniques of 8 day interval recorded stream-flow data to daily one. J. Korea Water Resour. Assoc. 2012, 45, 91–99. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.H.; Kim, H.S. Low flow estimation for river water quality models using a long-term runoff hydrologic model. J. Korean Soc. Water Environ. 2005, 21, 575–583. [Google Scholar]
- Kim, C.G.; Kim, N.W. Derivation of continuous pollutant loadograph using distributed model with 8-day measured flow and water quality data of MOE. J. Korean Soc. Water Environ. 2009, 25, 125–135. [Google Scholar]
- Smakhtin, V.U. Estimating daily flow duration curves from monthly streamflow data. Waster SA, 1 January 2000. pp. 13–18. Available online: http://www.wrc.org.za (accessed on 18 February 2024).
- Rebora, N.; Silvestro, F.; Rudari, R.; Herold, C.; Ferraris, L. Downscaling stream flow time series from monthly to daily scales using an auto-regressive stochastic algorithm: StreamFARM. J. Hydrol. 2016, 537, 297–310. [Google Scholar] [CrossRef]
- Freeman, M.C.; Bestgen, K.R.; Carlisle, D.; Frimpong, E.A.; Franssen, N.R.; Gido, K.B.; Irwin, E.; Kanno, Y.; Luce, C.; Kyle McKay, S.; et al. Toward improved understanding of streamflow effects on freshwater fishes. Fisheries 2022, 47, 290–298. [Google Scholar] [CrossRef]
- Reichl, F.; Hack, J. Derivation of flow duration curves to estimate hydropower generation potential in data-scarce regions. Water 2017, 9, 572. [Google Scholar] [CrossRef]
- John, A.; Fowler, K.; Nathan, R.; Horne, A.; Stewardson, M. Disaggregated monthly hydrological models can outperform daily models in providing daily flow statistics and extrapolate well to a drying climate. J. Hydrol. 2021, 598, 126471. [Google Scholar] [CrossRef]
- Slaughter, A.R.; Retief, D.C.H.; Hughes, D.A. A method to disaggregate monthly flows to daily using daily rainfall observations: Model design and testing. Hydrol. Sci. J. 2015, 60, 1896–1910. [Google Scholar] [CrossRef]
- Cleland, B. TMDL Development From the “Bottom Up”—Part III: Duration Curves and Wet-Weather Assessments. In Proceedings of the National TMDL Science and Policy 2003—WEF Specialty Conference, Chicago, IL, USA, 15 September 2003. [Google Scholar]
- Yoo, M.H.; Youn, S.H.; Park, K.W.; Kim, A.R.; Yoon, S.C.; Suh, Y.S. The Characteristics of Spatio-Temporal Distribution on Phytoplankton in the Nakdong River Estuary, during 2013–2015. J. Korean Soc. Mar. Environ. Saf. 2016, 22, 738–749. (In Korean) [Google Scholar] [CrossRef]
- Mitchell, T.M. Machine Learning, McGraw-Hill; Science/Engineering/Math: New York, NY, USA, 1997; pp. 1–432. [Google Scholar]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- Mebane, V.J.; Day, R.L.; Hamlett, J.M.; Watson, J.E.; Roth, G.W. Validating the FAO AquaCrop Model for Rainfed Maize in Pennsylvania. Agron. J. 2012, 105, 419–427. [Google Scholar] [CrossRef]
- Kang, H.W.; Ryu, J.C.; Shin, M.H.; Choi, J.D.; Choi, J.W.; Shin, D.S.; Lim, K.J. Application of Web-based Load Duration Curve System to TMD L Watersheds for Evaluation of Water Quality and Pollutant Loads. J. Korean Soc. Water Qual. 2011, 27, 689–698. (In Korean) [Google Scholar]
- Park, J.H. A Study of Waterbody Health Diagnosis Method. Master’s Thesis, Kyungpook National University, Daegu, Republic of Korea, 2010; pp. 1–87. (In Korean). [Google Scholar]
- Shin, K.Y. A Development and Assessment of Load Duration Curve for Total Water Pollution Loading System. Ph.D. Thesis, Kangwon National University, Daegu, Republic of Korea, 2013; pp. 1–144. (In Korean). [Google Scholar]
- Singh, H.; Bhatia, T.; Litoria, P.; Pateriya, B. Web GIS Development using Open Source Leaflet and Geoserver Toolkit. Int. J. Comput. Sci. Technol. 2018, 9, 29–33. [Google Scholar]
- Moyon, E.S.; Morales, E.M.O.; Jayoma, J.M. Design and Development of a Web GIS-Based Visualization and Analytical Platform for Farm-to-Market Road Projects of the Philippines’ Department of Agriculture. In Proceedings of the 2021 IEEE 13th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Manila, Philippines, 28–30 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
References | Advantages | Limitations |
---|---|---|
[14] | Insufficient data updated using the daily data at a nearby, hydrologically similar gauging station | Insufficient evaluation of hydrologically similar observation points |
[12,15] | Flow data estimated using TANK model with respect to sampling frequency | Estimated data affected by various artifacts (e.g., a dam) located near the study area |
[10,16] | Extended daily flow data from 8-day interval flow data using SWAT model | High-flow regime faces high uncertainty due to scarce high-flow measurements |
[17,18,19,20,21,22] | Emphasizes the advantages of daily discharge data for constructing FDCs and the importance of daily timestep hydrological information for water resource management |
QLRC Case | Point Source | Nonpoint Source | Classification |
---|---|---|---|
I | X | X | Natural |
II | O | O | Polluted |
III | O | X | Point Source Management |
IV | X | O | Nonpoint Source Management |
TMDL Watershed | Valid Daily Flow Station | TMDL Watershed | Valid Daily Flow Station | TMDL Watershed | Valid Daily Flow Station |
---|---|---|---|---|---|
Banbyeon A | 3 | Milyang A | 1 | Nakbon K | 1 |
Banbyeon B | 3 | Milyang B | 5 | Nakbon L | 3 |
Byeongseong A | 4 | Naeseong A | 3 | Nakbon M | - |
Gamcheon A | 2 | Naeseong B | 5 | Nakbon N | - |
Geumcheon A | 1 | Nakbon A | 1 | Namgang A | 4 |
Hoecheon A | 5 | Nakbon B | 5 | Namgang B | 3 |
Hwanggang A | 2 | Nakbon C | 1 | Namgang C | 2 |
Hwanggang B | 3 | Nakbon D | 3 | Namgang D | 4 |
Ian A | 2 | Nakbon E | 1 | Namgang E | 2 |
Kilan A | 1 | Nakbon F | - | Wicheon A | 5 |
Kumho A | 5 | Nakbon G | - | Wicheon B | 3 |
Kumho B | 2 | Nakbon H | 1 | Yeonggang A | 3 |
Kumho C | 5 | Nakbon I | - | Yongjeon A | 1 |
Micheon A | 2 | Nakbon J | 2 |
TMDL Watershed | Stream Gauging Station | a | b | Error Function | R2 |
---|---|---|---|---|---|
Banbyeon A | Singu | 2.77238 | −3.5716 | 97.39 | 0.74 |
Banbyeon B | Imha | 1.12563 | −13.6108 | 107.17 | 0.66 |
Byeongseong A | Dongmun | 1.48308 | 2.14483 | 31.86 | 0.68 |
Gamcheon A | Jipum | 3.14825 | −0.38763 | 86.8 | 0.88 |
Geumcheon A | Sanyang | 1.00397 | 1.16347 | 2.27 | 0.95 |
Geumho A | Geumho | 0.97793 | −0.5577 | 304.57 | 0.82 |
Geumho B | Amnyang | 7.73868 | 6.79683 | 306.93 | 0.98 |
Geumho C | Seongseo | 0.55324 | 20.5551 | 281.68 | 0.92 |
Hoecheon A | Ssangnim | 3.12028 | 1.35586 | 105.01 | 0.97 |
Hwanggang A | Geochang1 | 3.30469 | −8.14735 | 300.83 | 0.9 |
Hwanggang B | Jukgo | 1.34013 | −5.0225 | 87.53 | 0.83 |
Micheon A | Unsan | 0.52257 | 0.14417 | 8.12 | 0.87 |
Miryang B | Daeri | 2.35258 | 9.96011 | 529.86 | 0.57 |
Naeseong B | Hyangseok | 1.91505 | −9.4416 | 173.66 | 0.99 |
Nakbon A | Jangseong | 1.40907 | 1.20955 | 10.27 | 0.91 |
Nakbon B | Yangsam | 0.97026 | −1.47236 | 15.26 | 0.96 |
Nakbon C | Gudam | 1.03267 | −3.70727 | 23.19 | 0.99 |
Nakbon D | Dalji | 2.05667 | 55.0083 | 3106.03 | 0.93 |
Nakbon E | Seonsan | 7.06949 | 6.72527 | 6617.5 | 0.86 |
Nakbon K | Hwaseong | 9.26286 | −160.528 | 77,645.8 | 0.79 |
Nakbon L | Gasan | 24.2514 | −573.166 | 156,213 | 0.74 |
Namgang B | Sancheong | 1.81337 | −12.5808 | 1274.71 | 0.92 |
Namgang D | Deokgok | 1.30249 | 0.44271 | 353.57 | 0.95 |
Namgang A | Anui | 3.19789 | 7.83895 | 69.59 | 0.96 |
Namgang E | Georyonggang | 0.94966 | 3.11901 | 36.97 | 1.00 |
Wicheon A | Museong | 1.00526 | 0.86205 | 154.02 | 0.77 |
Wicheon B | Yonggok | 0.724 | 2.04637 | 37.71 | 0.96 |
Yeonggang A | Jeomchon | 0.69471 | 0.91496 | 15.84 | 0.98 |
Yongjeon A | Cheongson | 1.84608 | −5.70204 | 323.45 | 0.82 |
TMDL Watershed | RMSE | MAE | IOA | NSE |
---|---|---|---|---|
Banbyeon A | 15.89 | 6.15 | 0.92 | 0.66 |
Banbyeon B | 8.36 | 3.39 | 0.89 | 0.61 |
Byeongseong A | 5.64 | 2.25 | 0.89 | 0.52 |
Gamcheon A | 9.32 | 3.88 | 0.97 | 0.86 |
Geumcheon A | 1.48 | 1.10 | 0.98 | 0.92 |
Geumho A | 17.45 | 4.44 | 0.95 | 0.78 |
Geumho B | 17.43 | 7.43 | 0.99 | 0.98 |
Geumho C | 16.74 | 12.56 | 0.98 | 0.91 |
Hoecheon A | 10.25 | 3.40 | 0.99 | 0.97 |
Hwanggang A | 16.93 | 6.77 | 0.97 | 0.88 |
Hwanggang B | 9.35 | 7.49 | 0.93 | 0.79 |
Micheon A | 2.85 | 1.12 | 0.96 | 0.85 |
Miryang B | 22.00 | 10.72 | 0.86 | 0.36 |
Naeseong B | 12.80 | 7.13 | 1.00 | 0.99 |
Nakbon A | 3.21 | 1.42 | 0.98 | 0.90 |
Nakbon B | 14.16 | 8.12 | 0.99 | 0.95 |
Nakbon C | 4.75 | 3.63 | 1.00 | 0.99 |
Nakbon D | 49.44 | 29.31 | 0.99 | 0.94 |
Nakbon E | 73.37 | 50.32 | 0.97 | 0.86 |
Nakbon K | 276.96 | 159.22 | 0.94 | 0.73 |
Nakbon L | 394.87 | 259.09 | 0.84 | -0.18 |
Namgang A | 15.85 | 6.67 | 0.99 | 0.95 |
Namgang B | 35.70 | 19.21 | 0.98 | 0.91 |
Namgang D | 18.80 | 12.08 | 0.99 | 0.94 |
Namgang E | 6.08 | 3.53 | 1.00 | 1.00 |
Wicheon A | 12.36 | 4.37 | 0.93 | 0.70 |
Wicheon B | 6.14 | 2.46 | 0.99 | 0.95 |
Yeonggang A | 3.96 | 1.52 | 1.00 | 0.98 |
Yongjeon A | 13.91 | 4.38 | 0.95 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kum, D.; Ryu, J.; Shin, Y.; Jeon, J.; Han, J.; Lim, K.J.; Kim, J. Development of Daily Flow Expansion Regression and Web GIS-Based Pollutant Load Evaluation System. Water 2024, 16, 744. https://doi.org/10.3390/w16050744
Kum D, Ryu J, Shin Y, Jeon J, Han J, Lim KJ, Kim J. Development of Daily Flow Expansion Regression and Web GIS-Based Pollutant Load Evaluation System. Water. 2024; 16(5):744. https://doi.org/10.3390/w16050744
Chicago/Turabian StyleKum, Donghyuk, Jichul Ryu, Yongchul Shin, Jihong Jeon, Jeongho Han, Kyoung Jae Lim, and Jonggun Kim. 2024. "Development of Daily Flow Expansion Regression and Web GIS-Based Pollutant Load Evaluation System" Water 16, no. 5: 744. https://doi.org/10.3390/w16050744
APA StyleKum, D., Ryu, J., Shin, Y., Jeon, J., Han, J., Lim, K. J., & Kim, J. (2024). Development of Daily Flow Expansion Regression and Web GIS-Based Pollutant Load Evaluation System. Water, 16(5), 744. https://doi.org/10.3390/w16050744