Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks
Abstract
:1. Introduction
1.1. The DO Prediction Models and Previous Work
1.2. Motivations and Contributions of the Study
2. Proposed Approaches
2.1. Data Background and Analysis
2.2. Method Selection
2.2.1. LSTM-Based Methods
2.2.2. GRU-Based Methods
2.3. Evaluation Criteria
- The mean square error (MSE)
- The mean absolute error (MAE)
- The R-squared () shows the discrepancy between the expected and actual values. The equation is given by:
2.4. Researching Process
3. Results and Discussion
3.1. The Overturning in Lake Erie
3.2. Number of Hypoxia Days in the Lake Erie Central Basin
3.3. The Performance of Machine Learning Models
3.4. The Features’ Contribution to DO Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gorgan-Mohammadi, F.; Rajaee, T.; Zounemat-Kermani, M. Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water. Sustain. Water Resour. Manag. 2023, 9, 1. [Google Scholar] [CrossRef]
- McLaren, J.S.; Van Kirk, R.W.; Mabaka, A.J.; Brothers, S.; Budy, P. Drawdown, Habitat, and Kokanee Populations in a Western US Reservoir. N. Am. J. Fish. Manag. 2023, 43, 339–351. [Google Scholar] [CrossRef]
- Kumar, S.; Dubey, M.; Kumar, A. Metabolic Adaptation of Fishes Under Different Consequences of Climate Change. In Outlook of Climate Change and Fish Nutrition; Springer: Singapore, 2023; pp. 121–132. [Google Scholar]
- Cavole, L.M.; Limburg, K.E.; Gallo, N.D.; Salvanes, A.G.V.; Ramírez-Valdez, A.; Levin, L.A.; Oropeza, O.A.; Hertwig, A.; Liu, M.C.; McKeegan, K.D. Otoliths of marine fishes record evidence of low oxygen, temperature and pH conditions of deep Oxygen Minimum Zones. Deep Sea Res. Part I Oceanogr. Res. Pap. 2023, 191, 103941. [Google Scholar] [CrossRef]
- Watson, S.B.; Miller, C.; Arhonditsis, G.; Boyer, G.L.; Carmichael, W.; Charlton, M.N.; Confesor, R.; Depew, D.C.; Höök, T.O.; Ludsin, S.A.; et al. The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful Algae 2016, 56, 44–66. [Google Scholar] [CrossRef]
- Scavia, D.; Allan, J.D.; Arend, K.K.; Bartell, S.; Beletsky, D.; Bosch, N.S.; Brandt, S.B.; Briland, R.D.; Daloğlu, I.; DePinto, J.V.; et al. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J. Great Lakes Res. 2014, 40, 226–246. [Google Scholar] [CrossRef]
- Jane, S.F.; Hansen, G.J.; Kraemer, B.M.; Leavitt, P.R.; Mincer, J.L.; North, R.L.; Pilla, R.M.; Stetler, J.T.; Williamson, C.E.; Woolway, R.I.; et al. Widespread deoxygenation of temperate lakes. Nature 2021, 594, 66–70. [Google Scholar] [CrossRef]
- Global Great Lakes. Lake Erie Overview. Available online: https://globalgreatlakes.org/lgl/erie/index.html (accessed on 30 December 2023).
- Karatayev, A.Y.; Burlakova, L.E.; Hrycik, A.R.; Daniel, S.E.; Mehler, K.; Hinchey, E.K.; Dermott, R.; Griffiths, R. Long-term dynamics of Lake Erie benthos: One lake, three distinct communities. J. Great Lakes Res. 2022, 48, 1599–1617. [Google Scholar] [CrossRef]
- Wu, N.; Huang, J.; Schmalz, B.; Fohrer, N. Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches. Limnology 2014, 15, 47–56. [Google Scholar] [CrossRef]
- Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P. Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J. Hydrol. 2015, 520, 224–243. [Google Scholar] [CrossRef]
- Ji, X.; Shang, X.; Dahlgren, R.A.; Zhang, M. Prediction of dissolved oxygen concentration in hypoxic river systems using support vector machine: A case study of Wen-Rui Tang River, China. Environ. Sci. Pollut. Res. 2017, 24, 16062–16076. [Google Scholar] [CrossRef]
- Olyaie, E.; Abyaneh, H.Z.; Mehr, A.D. A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geosci. Front. 2017, 8, 517–527. [Google Scholar] [CrossRef]
- Heddam, S.; Kisi, O. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 2018, 559, 499–509. [Google Scholar] [CrossRef]
- Kim, H.G.; Hong, S.; Jeong, K.S.; Kim, D.K.; Joo, G.J. Determination of sensitive variables regardless of hydrological alteration in artificial neural network model of chlorophyll a: Case study of Nakdong River. Ecol. Model. 2019, 398, 67–76. [Google Scholar] [CrossRef]
- Ahmed, M.H.; Lin, L.S. Dissolved oxygen concentration predictions for running waters with different land use land cover using a quantile regression forest machine learning technique. J. Hydrol. 2021, 597, 126213. [Google Scholar] [CrossRef]
- Ranković, V.; Radulović, J.; Radojević, I.; Ostojić, A.; Čomić, L. Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol. Model. 2010, 221, 1239–1244. [Google Scholar] [CrossRef]
- Ay, M.; Kisi, O. Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J. Environ. Eng. 2012, 138, 654–662. [Google Scholar] [CrossRef]
- Antanasijević, D.; Pocajt, V.; Perić-Grujić, A.; Ristić, M. Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. J. Hydrol. 2014, 519, 1895–1907. [Google Scholar] [CrossRef]
- Li, W.; Wu, H.; Zhu, N.; Jiang, Y.; Tan, J.; Guo, Y. Prediction of dissolved oxygen in a fishery pond based on gated recurrent unit (GRU). Inf. Process. Agric. 2021, 8, 185–193. [Google Scholar] [CrossRef]
- Li, W.; Fang, H.; Qin, G.; Tan, X.; Huang, Z.; Zeng, F.; Du, H.; Li, S. Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques. Sci. Total Environ. 2020, 731, 139099. [Google Scholar] [CrossRef]
- Zhu, S.; Heddam, S. Prediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: Extreme learning machines (ELM) versus artificial neural network (ANN). Water Qual. Res. J. 2020, 55, 106–118. [Google Scholar] [CrossRef]
- Cao, X.; Ren, N.; Tian, G.; Fan, Y.; Duan, Q. A three-dimensional prediction method of dissolved oxygen in pond culture based on Attention-GRU-GBRT. Comput. Electron. Agric. 2021, 181, 105955. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Liu, Z.; Wu, T. A deep learning interpretable model for river dissolved oxygen multi-step and interval prediction based on multi-source data fusion. J. Hydrol. 2024, 629, 130637. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Jordan, M.I. Serial order: A parallel distributed processing approach. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1997; Volume 121, pp. 471–495. [Google Scholar]
- Xue, P.; Wagh, A.; Ma, G.; Wang, Y.; Yang, Y.; Liu, T.; Huang, C. Integrating Deep Learning and Hydrodynamic Modeling to Improve the Great Lakes Forecast. Remote Sens. 2022, 14, 2640. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Zhong, D.; Xie, S.; Xu, J. ConvLSTM Network-Based Rainfall Nowcasting Method with Combined Reflectance and Radar-Retrieved Wind Field as Inputs. Atmosphere 2022, 13, 411. [Google Scholar] [CrossRef]
- Huang, R.; Ma, C.; Ma, J.; Huangfu, X.; He, Q. Machine learning in natural and engineered water systems. Water Res. 2021, 205, 117666. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, H.; Liu, C.; Zhang, S.; Ding, A.; Xie, E.; Li, J.; Wang, S. Prediction of harmful algal blooms in large water bodies using the combined EFDC and LSTM models. J. Environ. Manag. 2021, 295, 113060. [Google Scholar] [CrossRef]
- Liang, Z.; Zou, R.; Chen, X.; Ren, T.; Su, H.; Liu, Y. Simulate the forecast capacity of a complicated water quality model using the long short-term memory approach. J. Hydrol. 2020, 581, 124432. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture. Sensors 2019, 19, 1420. [Google Scholar] [CrossRef] [PubMed]
- Pyo, J.; Pachepsky, Y.; Kim, S.; Abbas, A.; Kim, M.; Kwon, Y.S.; Ligaray, M.; Cho, K.H. Long short-term memory models of water quality in inland water environments. Water Res. X 2023, 21, 100207. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment. Sustainability 2019, 11, 2058. [Google Scholar] [CrossRef]
- Kim, Y.W.; Kim, T.; Shin, J.; Go, B.; Lee, M.; Lee, J.; Koo, J.; Cho, K.H.; Cha, Y. Forecasting abrupt depletion of dissolved oxygen in urban streams using discontinuously measured hourly time-series data. Water Resour. Res. 2021, 57, e2020WR029188. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Wang, J.; Liu, C.; Duan, Q. Prediction of dissolved oxygen in pond culture water based on K-means clustering and gated recurrent unit neural network. Aquac. Eng. 2020, 91, 102122. [Google Scholar] [CrossRef]
- Abba, S.I.; Linh, N.T.T.; Abdullahi, J.; Ali, S.I.A.; Pham, Q.B.; Abdulkadir, R.A.; Costache, R.; Anh, D.T. Hybrid machine learning ensemble techniques for modeling dissolved oxygen concentration. IEEE Access 2020, 8, 157218–157237. [Google Scholar] [CrossRef]
- Nanyang, Z.; Hao, W.; Daheng, Y.; Zhiqiang, W.; Yongnian, J.; Ya, G. An improved method for estimating dissolved oxygen in crab ponds based on Long Short-Term Memory. Smart Agric. 2019, 1, 67. [Google Scholar]
- Zhu, N.; Ji, X.; Tan, J.; Jiang, Y.; Guo, Y. Prediction of dissolved oxygen concentration in aquatic systems based on transfer learning. Comput. Electron. Agric. 2021, 180, 105888. [Google Scholar] [CrossRef]
- Wai, K.P.; Chia, M.Y.; Koo, C.H.; Huang, Y.F.; Chong, W.C. Applications of deep learning in water quality management: A state-of-the-art review. J. Hydrol. 2022, 613, 128332. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Khosravi, K.; Panahi, M.; Golkarian, A.; Keesstra, S.D.; Saco, P.M.; Bui, D.T.; Lee, S. Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J. Hydrol. 2020, 591, 125552. [Google Scholar] [CrossRef]
- Chen, H.; Chen, A.; Xu, L.; Xie, H.; Qiao, H.; Lin, Q.; Cai, K. A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources. Agric. Water Manag. 2020, 240, 106303. [Google Scholar] [CrossRef]
- Yan, J.; Liu, J.; Yu, Y.; Xu, H. Water quality prediction in the luan river based on 1-drcnn and bigru hybrid neural network model. Water 2021, 13, 1273. [Google Scholar] [CrossRef]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model. Stoch. Environ. Res. Risk Assess. 2020, 34, 415–433. [Google Scholar] [CrossRef]
- Barzegar, R.; Aalami, M.T.; Adamowski, J. Coupling a hybrid CNN-LSTM deep learning model with a boundary corrected maximal overlap discrete wavelet transform for multiscale lake water level forecasting. J. Hydrol. 2021, 598, 126196. [Google Scholar] [CrossRef]
- Baek, S.S.; Pyo, J.; Chun, J.A. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach. Water 2020, 12, 3399. [Google Scholar] [CrossRef]
- Yang, Y.; Xiong, Q.; Wu, C.; Zou, Q.; Yu, Y.; Yi, H.; Gao, M. A study on water quality prediction by a hybrid CNN-LSTM model with attention mechanism. Environ. Sci. Pollut. Res. 2021, 28, 55129–55139. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, C.; Wollheim, W.M. Prediction of riverine daily minimum dissolved oxygen concentrations using hybrid deep learning and routine hydrometeorological data. Sci. Total Environ. 2024, 918, 170383. [Google Scholar] [CrossRef]
- Yang, J. Predicting water quality through daily concentration of dissolved oxygen using improved artificial intelligence. Sci. Rep. 2023, 13, 20370. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.c. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Moghadam, S.V.; Sharafati, A.; Feizi, H.; Marjaie, S.M.S.; Asadollah, S.B.H.S.; Motta, D. An efficient strategy for predicting river dissolved oxygen concentration: Application of deep recurrent neural network model. Environ. Monit. Assess. 2021, 193, 798. [Google Scholar] [CrossRef] [PubMed]
- Azma, A.; Liu, Y.; Azma, M.; Saadat, M.; Zhang, D.; Cho, J.; Rezania, S. Hybrid machine learning models for prediction of daily dissolved oxygen. J. Water Process Eng. 2023, 54, 103957. [Google Scholar] [CrossRef]
- Ayesha Jasmin, S.; Ramesh, P.; Tanveer, M. An intelligent framework for prediction and forecasting of dissolved oxygen level and biofloc amount in a shrimp culture system using machine learning techniques. Expert Syst. Appl. 2022, 199, 117160. [Google Scholar] [CrossRef]
- Bolick, M.M.; Post, C.J.; Naser, M.Z.; Mikhailova, E.A. Comparison of machine learning algorithms to predict dissolved oxygen in an urban stream. Environ. Sci. Pollut. Res. 2023, 30, 78075–78096. [Google Scholar] [CrossRef]
- Roushangar, K.; Davoudi, S.; Shahnazi, S. The potential of novel hybrid SBO-based long short-term memory network for prediction of dissolved oxygen concentration in successive points of the Savannah River, USA. Environ. Sci. Pollut. Res. 2023, 30, 46960–46978. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Khan, D.M.; Alshanbari, H.M.; El-Bagoury, A.A.A.H. Prediction of complex stock market data using an improved hybrid emd-lstm model. Appl. Sci. 2023, 13, 1429. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Thé, J.V.G.; Yang, S.X.; Gharabaghi, B. The Discharge Forecasting of Multiple Monitoring Station for Humber River by Hybrid LSTM Models. Water 2022, 14, 1794. [Google Scholar] [CrossRef]
- Kuo, C.E.; Chen, G.T. Automatic sleep staging based on a hybrid stacked LSTM neural network: Verification using large-scale dataset. IEEE Access 2020, 8, 111837–111849. [Google Scholar] [CrossRef]
- Pilla, R.M.; Williamson, C.E.; Adamovich, B.V.; Adrian, R.; Anneville, O.; Chandra, S.; Colom-Montero, W.; Devlin, S.P.; Dix, M.A.; Dokulil, M.T.; et al. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci. Rep. 2020, 10, 20514. [Google Scholar] [CrossRef]
- Kralj, M.; Lipizer, M.; Čermelj, B.; Celio, M.; Fabbro, C.; Brunetti, F.; Francé, J.; Mozetič, P.; Giani, M. Hypoxia and dissolved oxygen trends in the northeastern Adriatic Sea (Gulf of Trieste). Deep Sea Res. Part II Top. Stud. Oceanogr. 2019, 164, 74–88. [Google Scholar] [CrossRef]
- Oldham, R.; Kraus, R. Bottom Dissolved Oxygen Measurements from Lake Erie’s Central Basin, 2021: U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Koutsovili, E.I.; Tzoraki, O.; Theodossiou, N.; Tsekouras, G.E. Early Flood Monitoring and Forecasting System Using a Hybrid Machine Learning-Based Approach. ISPRS Int. J. Geo-Inf. 2023, 12, 464. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. A novel genetic LSTM model for wind power forecast. Energy 2021, 223, 120069. [Google Scholar] [CrossRef]
- Tabrizi, S.E.; Xiao, K.; Thé, J.V.G.; Saad, M.; Farghaly, H.; Yang, S.X.; Gharabaghi, B. Hourly road pavement surface temperature forecasting using deep learning models. J. Hydrol. 2021, 603, 126877. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Z.; Zhang, W.; Zhang, C.; Xu, Q. Learning Multiscale Temporal–Spatial–Spectral Features via a Multipath Convolutional LSTM Neural Network for Change Detection With Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Rahman, S.A.; Adjeroh, D.A. Deep learning using convolutional LSTM estimates biological age from physical activity. Sci. Rep. 2019, 9, 11425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Z.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Flood Forecasting Using Hybrid LSTM and GRU Models with Lag Time Preprocessing. Water 2023, 15, 3982. [Google Scholar] [CrossRef]
- Haq, K.R.A.; Harigovindan, V. Water quality prediction for smart aquaculture using hybrid deep learning models. IEEE Access 2022, 10, 60078–60098. [Google Scholar]
- Zhang, Y.; Pan, D.; Van Griensven, J.; Yang, S.X.; Gharabaghi, B. Intelligent flood forecasting and warning: A survey. Intell. Robot. 2023, 3, 190–212. [Google Scholar] [CrossRef]
- Anderson, E.J.; Stow, C.A.; Gronewold, A.D.; Mason, L.A.; McCormick, M.J.; Qian, S.S.; Ruberg, S.A.; Beadle, K.; Constant, S.A.; Hawley, N. Seasonal overturn and stratification changes drive deep-water warming in one of Earth’s largest lakes. Nat. Commun. 2021, 12, 1688. [Google Scholar] [CrossRef] [PubMed]
- Dugener, N.M.; Stone, I.P.; Weinke, A.D.; Biddanda, B.A. Out of oxygen: Stratification and loading drove hypoxia during a warm, wet, and productive year in a Great Lakes estuary. J. Great Lakes Res. 2023, 49, 1015–1028. [Google Scholar] [CrossRef]
- Jabbari, A.; Ackerman, J.D.; Boegman, L.; Zhao, Y. Episodic hypoxia in the western basin of Lake Erie. Limnol. Oceanogr. 2019, 64, 2220–2236. [Google Scholar] [CrossRef]
- Zhou, Y.; Obenour, D.R.; Scavia, D.; Johengen, T.H.; Michalak, A.M. Spatial and temporal trends in Lake Erie hypoxia, 1987–2007. Environ. Sci. Technol. 2013, 47, 899–905. [Google Scholar] [CrossRef]
- Rao, Y.R.; Hawley, N.; Charlton, M.N.; Schertzer, W.M. Physical processes and hypoxia in the central basin of Lake Erie. Limnol. Oceanogr. 2008, 53, 2007–2020. [Google Scholar] [CrossRef]
- Uejio, C.K.; Gonsoroski, E.; Sherchan, S.P.; Beitsch, L.; Harville, E.; Blackmore, C.; Pan, K.; Lichtveld, M.Y. Harmful algal bloom-related 311 calls, Cape Coral, Florida 2018–2019. J. Water Health 2022, 20, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Scavia, D.; Wang, Y.C.; Obenour, D.R. Advancing freshwater ecological forecasts: Harmful algal blooms in Lake Erie. Sci. Total Environ. 2023, 856, 158959. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Collingsworth, P.D.; Kraus, R.; Minsker, B. Spatio-Temporal Analysis of Hypoxia in the Central Basin of Lake Erie of North America. Water Resour. Res. 2021, 57, e2020WR027676. [Google Scholar] [CrossRef]
- Saeed, A.; Alsini, A.; Amin, D. Water quality multivariate forecasting using deep learning in a West Australian estuary. Environ. Model. Softw. 2024, 171, 105884. [Google Scholar] [CrossRef]
- Shi, P.; Kuang, L.; Yuan, L.; Wang, Q.; Li, G.; Yuan, Y.; Zhang, Y.; Huang, G. Dissolved oxygen prediction using regularized extreme learning machine with clustering mechanism in a black bass aquaculture pond. Aquac. Eng. 2024, 105, 102408. [Google Scholar] [CrossRef]
Site | Longitude (W) | Latitude (N) | Sites | Longitude (W) | Latitude (N) | Sites | Longitude (W) | Latitude (N) |
---|---|---|---|---|---|---|---|---|
616 | 80.9177 | 42.0836 | 715 | 81.0846 | 41.9179 | 908 | 82.2490 | 41.5838 |
617 | 80.7559 | 42.0831 | 809 | 82.0829 | 41.7501 | 909 | 82.0853 | 41.5857 |
618 | 80.5828 | 42.0833 | 811 | 81.7504 | 41.7501 | 910 | 81.9150 | 41.5839 |
619 | 80.4194 | 42.0893 | 813 | 81.4242 | 41.7606 | 911 | 81.7517 | 41.5853 |
711 | 81.7515 | 41.9171 | 814 | 81.2600 | 41.7974 | 912 | 81.5983 | 41.6154 |
713 | 81.4162 | 41.9169 | 906 | 82.5832 | 41.5826 | 1006 | 82.5720 | 41.4528 |
714 | 81.2496 | 41.9157 | 907 | 82.4074 | 41.584 | 1007 | 82.4245 | 41.4508 |
Site ID | Average Number of Hypoxia Days |
---|---|
911 | 40 |
809 | 31 |
909 | 31 |
813 | 31 |
907 | 27 |
910 | 27 |
711 | 25 |
713 | 23 |
908 | 20 |
912 | 20 |
714 | 17 |
Hours Ahead | Model | Training MSE | Training MAE | Training | Testing MSE | Testing MAE | Testing |
---|---|---|---|---|---|---|---|
1 | LSTM | 0.3877 | 0.5026 | 0.9564 | 1.3468 | 0.7810 | 0.8573 |
1 | GRU | 0.1969 | 0.3169 | 0.9779 | 0.9477 | 0.6785 | 0.8995 |
1 | CNN-LSTM | 0.3856 | 0.4728 | 0.9566 | 1.5118 | 0.8338 | 0.8398 |
1 | CNN-GRU | 0.1287 | 0.2466 | 0.9855 | 0.8359 | 0.6432 | 0.9114 |
1 | ConvLSTM | 0.2119 | 0.3634 | 0.9762 | 0.2842 | 0.3622 | 0.9699 |
3 | LSTM | 0.3345 | 0.4412 | 0.9623 | 1.4117 | 0.7908 | 0.8503 |
3 | GRU | 0.1973 | 0.3183 | 0.9778 | 1.002 | 0.6889 | 0.8938 |
3 | CNN-LSTM | 0.3480 | 0.4530 | 0.9608 | 1.5530 | 0.8426 | 0.8354 |
3 | CNN-GRU | 0.1259 | 0.2459 | 0.9858 | 0.8757 | 0.6511 | 0.9092 |
3 | ConvLSTM | 0.1882 | 0.3428 | 0.9788 | 0.3208 | 0.3837 | 0.9685 |
6 | LSTM | 0.3988 | 0.4727 | 0.9549 | 1.4644 | 0.7955 | 0.8447 |
6 | GRU | 0.2122 | 0.3303 | 0.9760 | 1.0656 | 0.7008 | 0.8870 |
6 | CNN-LSTM | 0.3906 | 0.4743 | 0.9558 | 1.5889 | 0.8454 | 0.8315 |
6 | CNN-GRU | 0.1416 | 0.2571 | 0.9840 | 0.9449 | 0.6623 | 0.8998 |
6 | ConvLSTM | 0.1984 | 0.3516 | 0.9776 | 0.3825 | 0.3899 | 0.9594 |
12 | LSTM | 0.5215 | 0.5157 | 0.9407 | 1.5917 | 0.8359 | 0.8310 |
12 | GRU | 0.2627 | 0.3595 | 0.9701 | 1.2350 | 0.7329 | 0.8689 |
12 | CNN-LSTM | 0.4249 | 0.5003 | 0.9517 | 1.7068 | 0.8612 | 0.8188 |
12 | CNN-GRU | 0.2167 | 0.2941 | 0.9754 | 1.0836 | 0.6820 | 0.8850 |
12 | ConvLSTM | 0.2771 | 0.3837 | 0.9685 | 0.5092 | 0.4172 | 0.9460 |
Model | Reference | Performance |
---|---|---|
ConvLSTM | This paper | = 0.9460 |
LSTM | Saeed et al. (2024) [79] | = 0.910 |
CNN-LSTM | Hu et al. (2024) [49] | = 0.865 |
K-medoids-LRELM | Shi et al. (2024) [80] | RMSE = 0.9755, MAE = 0.6993 |
BBO-ANN | Azma et al. (2023) [53] | MAPE = 2.3848 |
RF | Jasmin et.al (2022) [54] | = 0.709, accuracy = 98.26%, score = 0.7381 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, D.; Zhang, Y.; Deng, Y.; Van Griensven Thé, J.; Yang, S.X.; Gharabaghi, B. Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks. Water 2024, 16, 707. https://doi.org/10.3390/w16050707
Pan D, Zhang Y, Deng Y, Van Griensven Thé J, Yang SX, Gharabaghi B. Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks. Water. 2024; 16(5):707. https://doi.org/10.3390/w16050707
Chicago/Turabian StylePan, Daiwei, Yue Zhang, Ying Deng, Jesse Van Griensven Thé, Simon X. Yang, and Bahram Gharabaghi. 2024. "Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks" Water 16, no. 5: 707. https://doi.org/10.3390/w16050707
APA StylePan, D., Zhang, Y., Deng, Y., Van Griensven Thé, J., Yang, S. X., & Gharabaghi, B. (2024). Dissolved Oxygen Forecasting for Lake Erie’s Central Basin Using Hybrid Long Short-Term Memory and Gated Recurrent Unit Networks. Water, 16(5), 707. https://doi.org/10.3390/w16050707