A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-Scale Hydrodynamic Prediction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Progress
2.1.1. Dataset Construction
2.1.2. Training and Predictive Processes
2.2. Hydrodynamic Models
2.3. The U-Net-ConvLSTM Framework
2.3.1. U-Net Neural Network Structures
2.3.2. ConvLSTM Neural Network Structures
2.4. Predictive Model Accuracy Validation
2.4.1. Model Evaluation Index
2.4.2. The Case Study
3. Results and Discussion
3.1. Single-Step Forecasting
3.2. Ablation Experiments
3.3. Multi-Step-Ahead Forecasting
4. Conclusions
- (1)
- U-Net-ConvLSTM demonstrated excellent predictive performance on a long-series hydrodynamic dataset generated by a high-fidelity mechanistic model. It achieved an overall value above 0.99 and closely matched the results of the CFD simulation. Additionally, both the RMSE and MAE were maintained at a low level. U-Net-ConvLSTM decreased the time taken for single-step prediction by 62.08% when compared with conventional mechanistic models. These findings suggest that the proposed framework is stable and capable of accurately and efficiently predicting future time-step results.
- (2)
- When compared with CNN-ConvLSTM and U-Net, U-Net-ConvLSTM proved its usefulness by reducing the RMSE values used to calibrate the prediction error on the entire dataset by 33.34% and 1.68% after incorporating the skip connection part and the ConvLSTM part, respectively.
- (3)
- The model’s prediction horizon expanded from 1 to 5 days, resulting in a loss of just 8% in the value. Despite this decline, the value remained above 0.7, indicating a high level of accuracy. This demonstrates the model’s robustness and reliability in making multi-step-ahead predictions and also exemplifies the usability of the model in the case of lacking boundary conditions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
R2 | Goodness of fit |
CFD | Computational fluid dynamics |
LSTM | Long short-term memory |
CNN | Convolutional neural network |
ConvLSTM | Convolutional LSTM |
MSE | Mean square error |
RMSE | Root-mean-square error |
MAE | Mean absolute error |
Nomenclature | |
The flow velocity in the x-direction (m/s) | |
The river flow (m3/s) | |
The length of the channel along the direction of flow (m) | |
Water level (m) | |
Time (s) | |
Hydrodynamic indicator: k = 1—flow (m3/s) k = 2—water level (m) k = 3—flow velocity (m/s) k = 4—water depth (m) | |
^ | Simulated values: |
Markers for distinguishing between 1 × 1 convolutional layers and 3×3 convolutional layers | |
The size of the input data | |
The area of the overwater section (m2) | |
The side stream flow (m3/s) | |
The acceleration of gravity (m/s2) | |
The roughness | |
The hydraulic radius (m) | |
The coefficients [10] | |
Source term | |
Cell state | |
Input gate | |
Forget gate | |
Output gate | |
The hidden state | |
The Hadamard product |
References
- Ibrahim, A.; Meguid, M.A. CFD-DEM simulation of sand erosion into defective gravity pipes under constant groundwater table. Tunn. Undergr. Sp. Tech. 2023, 131, 104823. [Google Scholar] [CrossRef]
- Loli, M.; Mitoulis, S.A.; Tsatsis, A.; Manousakis, J.; Kourkoulis, R.; Zekkos, D. Flood characterization based on forensic analysis of bridge collapse using UAV reconnaissance and CFD simulations. Sci. Total Environ. 2022, 822, 153661. [Google Scholar] [CrossRef]
- Xie, D.; Zou, Q.; Mignone, A.; MacRae, J.D. Coastal flooding from wave overtopping and sea level rise adaptation in the northeastern USA. Coast. Eng. 2019, 150, 39–58. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci. China Phys. Mech. Astron. 2019, 62, 984701. [Google Scholar] [CrossRef]
- Sukhinov, A.I.; Chistyakov, A.E.; Alekseenko, E.V. Numerical realization of the three-dimensional model of hydrodynamics for shallow water basins on a high-performance system. Math. Models Comput. Simul. 2011, 3, 562–574. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, W.; Liu, X.; Peng, H.; Zhou, F.; Wang, H.; Ke, Q.; Xiao, B. Development and application of a multi-centre cloud platform architecture for water environment management. J. Environ. Manag. 2023, 344, 118670. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Shan, K.; Zeng, S.; Wang, L.; Gong, Z.; Wu, X.; Yang, B.; Shang, M. Combined Physical Process and Deep Learning for Daily Water Level Simulations across Multiple Sites in the Three Gorges Reservoir, China. Water 2023, 15, 3191. [Google Scholar] [CrossRef]
- Shen, C.; Appling, A.P.; Gentine, P.; Bandai, T.; Gupta, H.; Tartakovsky, A.; Baity-Jesi, M.; Fenicia, F.; Kifer, D.; Li, L.; et al. Differentiable modelling to unify machine learning and physical models for geosciences. Nat. Rev. Earth Environ. 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Xue, P.; Wagh, A.; Ma, G.; Wang, Y.; Yang, Y.; Liu, T.; Huang, C. Integrating Deep Learning and Hydrodynamic Modeling to Improve the Great Lakes Forecast. Remote Sens. 2022, 14, 2640. [Google Scholar] [CrossRef]
- Ladwig, R.; Daw, A.; Albright, E.A.; Buelo, C.; Karpatne, A.; Meyer, M.F.; Neog, A.; Hanson, P.C.; Dugan, H.A. Modular Compositional Learning Improves 1D Hydrodynamic Lake Model Performance by Merging Process-Based Modeling with Deep Learning. J. Adv. Model. Earth Syst. 2024, 16, e2023MS003953. [Google Scholar] [CrossRef]
- Li, G.; Zhu, H.; Jian, H.; Zha, W.; Wang, J.; Shu, Z.; Yao, S.; Han, H. A combined hydrodynamic model and deep learning method to predict water level in ungauged rivers. J. Hydrol. 2023, 625, 130025. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Chen, X.; Engel, B.A.; Zhang, W. The moving confluence route technology with WAD scheme for 3D hydrodynamic simulation in high altitude inland waters. J. Hydrol. 2018, 559, 411–427. [Google Scholar] [CrossRef]
- Ajami, N.K.; Duan, Q.; Sorooshian, S. An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res. 2007, 43, W01403. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Hu, R.; Fang, F.; Pain, C.C.; Navon, I.M. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method. J. Hydrol. 2019, 575, 911–920. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Chin, R.J.; Wang, C.; Wang, C. Long Short-Term Memory (LSTM) Based Model for Flood Forecasting in Xiangjiang River. Ksce J. Civ. Eng. 2023, 27, 5030–5040. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Krebs, P. Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach. Water 2022, 14, 993. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Zhang, S. Fast Prediction of Urban Flooding Water Depth Based on CNN-LSTM. Water 2023, 15, 1397. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Bai, L.; Song, G.; Tao, J.; Chen, L. Deforestation Detection Based on U-Net and LSTM in Optical Satellite Remote Sensing Images. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 3753–3756. [Google Scholar]
- Yin, L.; Wang, L.; Li, T.; Lu, S.; Tian, J.; Yin, Z.; Li, X.; Zheng, W. U-Net-LSTM: Time Series-Enhanced Lake Boundary Prediction Model. Land 2023, 12, 1859. [Google Scholar] [CrossRef]
- Hou, Y.; Li, H.; Chen, H.; Wei, W.; Wang, J.; Huang, Y. A novel deep U-Net-LSTM framework for time-sequenced hydrodynamics prediction of the SUBOFF AFF-8. Eng. Appl. Comp. Fluid 2022, 16, 630–645. [Google Scholar] [CrossRef]
- Portal-Porras, K.; Fernandez-Gamiz, U.; Zulueta, E.; Irigaray, O.; Garcia-Fernandez, R. Hybrid LSTM+CNN architecture for unsteady flow prediction. Mater. Today Commun. 2023, 35, 106281. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Lin, Z.; Li, M.; Zheng, Z.; Cheng, Y.; Yuan, C. Self-attention convlstm for spatiotemporal prediction. AAAI 2020, 34, 11531–11538. [Google Scholar] [CrossRef]
- Lai, X.; Jiang, J.; Liang, Q.; Huang, Q. Large-scale hydrodynamic modeling of the middle Yangtze River Basin with complex river–lake interactions. J. Hydrol. 2013, 492, 228–243. [Google Scholar] [CrossRef]
- Sheikholeslami, S.; Meister, M.; Wang, T.; Payberah, A.H.; Vlassov, V.; Dowling, J. AutoAblation: Automated Parallel Ablation Studies for Deep Learning. In EuroMLSys ’21; Association for Computing Machinery: New York, NY, USA, 2021; pp. 55–61. [Google Scholar]
- Wang, Y.; Zhang, W.; Zhao, Y.; Peng, H.; Shi, Y. Modelling water quality and quantity with the influence of inter-basin water diversion projects and cascade reservoirs in the Middle-lower Hanjiang River. J. Hydrol. 2016, 541, 1348–1362. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Chen, Z.; Zhang, C.; Yu, H. Spatiotemporal forecasting in earth system science: Methods, uncertainties, predictability and future directions. Earth-Sci. Rev. 2021, 222, 103828. [Google Scholar] [CrossRef]
- Sun, J.; Cao, X.; Liang, H.; Huang, W.; Chen, Z.; Li, Z. New interpretations of normalization methods in deep learning. arXiv 2020, arXiv:2006.09104. [Google Scholar] [CrossRef]
- Eesa, A.S.; Arabo, W.K. A Normalization Methods for Backpropagation: A Comparative Study. Sci. J. Univ. Zakho 2017, 5, 319–323. [Google Scholar] [CrossRef]
- Muraina, I. Ideal Dataset Splitting Ratios in Machine Learning Algorithms: General Concerns for Data Scientists and Data Analysts. In 7th International Mardin Artuklu Scientific Researches Conference; Mardin Artuklu: Mardin, Turkey, 2022. [Google Scholar]
- Cheng, M.; Fang, F.; Navon, I.M.; Zheng, J.; Zhu, J.; Pain, C. Assessing uncertainty and heterogeneity in machine learning-based spatiotemporal ozone prediction in Beijing-Tianjin- Hebei region in China. Sci. Total Environ. 2023, 881, 163146. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Fang, F.; Pain, C.C.; Navon, I.M. Data-driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network. Comput. Method. Appl. Mech. Eng. 2020, 365, 113000. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Peng, H.; Li, Y.; Tang, J.; Wu, K.B. A Coupled Water Quantity–Quality Model for Water Allocation Analysis. Water Resour. Manag. 2010, 24, 485–511. [Google Scholar] [CrossRef]
- Lu, W.Z.; Zhang, W.S.; Cui, C.Z.; Leung, A.Y.T. A numerical analysis of free-surface flow in curved open channel with velocity–pressure-free-surface correction. Comput. Mech. 2004, 33, 215–224. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Y.; Liu, J.; Lang, S.; Zhang, X. Spatio-Temporal Unity Networking for Video Anomaly Detection. IEEE Access 2019, 7, 172425–172432. [Google Scholar] [CrossRef]
- R_Unet. 2015. Available online: https://github.com/Michael-MuChienHsu/R_Unet (accessed on 22 December 2020).
- Siddique, N.; Paheding, S.; Elkin, C.P.; Devabhaktuni, V. U-Net and Its Variants for Medical Image Segmentation: A Review of Theory and Applications. IEEE Access 2021, 9, 82031–82057. [Google Scholar] [CrossRef]
- Cheng, M.; Fang, F.; Navon, I.M.; Pain, C. Ensemble Kalman filter for GAN-ConvLSTM based long lead-time forecasting. J. Comput. Sci. 2023, 69, 102024. [Google Scholar] [CrossRef]
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.D.; Veith, T. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, H.; Zhang, W.; Fenicia, F.; Peng, H.; Xu, G. Hydrologic impacts of cascading reservoirs in the middle and lower Hanjiang River basin under climate variability and land use change. J. Hydrol. Reg. Stud. 2022, 44, 101253. [Google Scholar] [CrossRef]
Hydrodynamic Indicators | R2 | RMSE | MAE |
---|---|---|---|
Flow | 0.9920 | 76.4779 | 17.6770 |
Water level | 0.9999 | 0.0943 | 0.0482 |
Flow velocity | 0.9957 | 0.0134 | 0.0052 |
Water depth | 0.9987 | 0.0852 | 0.0272 |
Hydrodynamic Indicators | RMSE | |||
---|---|---|---|---|
Dataset | CNN-ConvLSTM | U-Net | U-Net-ConvLSTM | |
Flow | Training | 42.3749 | 22.3903 | 22.3873 |
Validation | 111.1455 | 77.3260 | 76.4779 | |
Water level | Training | 0.1267 | 0.0682 | 0.0689 |
Validation | 0.1655 | 0.0954 | 0.0943 | |
Flow velocity | Training | 0.0116 | 0.0078 | 0.0077 |
Validation | 0.0180 | 0.0137 | 0.0134 | |
Water depth | Training | 0.0604 | 0.0534 | 0.0491 |
Validation | 0.1090 | 0.0858 | 0.0852 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, A.; Zhang, W.; Zhang, X.; Chen, G.; Liu, X.; Jiang, A.; Zhou, F.; Peng, H. A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-Scale Hydrodynamic Prediction. Water 2024, 16, 625. https://doi.org/10.3390/w16050625
Li A, Zhang W, Zhang X, Chen G, Liu X, Jiang A, Zhou F, Peng H. A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-Scale Hydrodynamic Prediction. Water. 2024; 16(5):625. https://doi.org/10.3390/w16050625
Chicago/Turabian StyleLi, Ao, Wanshun Zhang, Xiao Zhang, Gang Chen, Xin Liu, Anna Jiang, Feng Zhou, and Hong Peng. 2024. "A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-Scale Hydrodynamic Prediction" Water 16, no. 5: 625. https://doi.org/10.3390/w16050625
APA StyleLi, A., Zhang, W., Zhang, X., Chen, G., Liu, X., Jiang, A., Zhou, F., & Peng, H. (2024). A Deep U-Net-ConvLSTM Framework with Hydrodynamic Model for Basin-Scale Hydrodynamic Prediction. Water, 16(5), 625. https://doi.org/10.3390/w16050625