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Abstract: Traditional hydrodynamic models face the significant challenge of balancing the demands
of long prediction spans and precise boundary conditions, large computational areas, and low compu-
tational costs when attempting to rapidly and accurately predict the nonlinear spatial and temporal
characteristics of fluids at the basin scale. To tackle this obstacle, this study constructed a novel
deep learning framework with a hydrodynamic model for the rapid spatiotemporal prediction of
hydrodynamics at the basin scale, named U-Net-ConvLSTM. A validated high-fidelity hydrodynamic
mechanistic model was utilized to build a 20-year hydrodynamic indicator dataset of the middle and
lower reaches of the Han River for the training and validation of U-Net-ConvLSTM. The findings
indicate that the R2 value of the model surpassed 0.99 when comparing the single-step prediction
results with the target values. Additionally, the required computing time fell by 62.08% compared
with the hydrodynamic model. The ablation tests demonstrate that the U-Net-ConvLSTM framework
outperforms other frameworks in terms of accuracy for basin-scale hydrodynamic prediction. In
the multi-step-ahead prediction scenarios, the prediction interval increased from 1 day to 5 days,
while consistently maintaining an R2 value above 0.7, which demonstrates the effectiveness of the
model in the missing boundary conditions scenario. In summary, the U-Net-ConvLSTM framework
is capable of making precise spatiotemporal predictions in hydrodynamics, which may be considered
a high-performance computational solution for predicting hydrodynamics at the basin scale.

Keywords: deep learning; U-Net; ConvLSTM; hydrodynamic prediction

1. Introduction

With the development of computational fluid dynamics (CFD), it is widely used in
flood simulation and prediction, groundwater transport simulation, and tidal movement
analysis, of which basin-scale hydrodynamic simulation is indispensable for many engi-
neering applications [1–4]. In current scenarios of basin-scale hydrodynamic simulation,
the simulation area is usually a large-scale basin at the km level, and the simulation du-
ration is usually set to a long time span, such as months or years [5,6]. The application of
traditional models in basin-scale hydrodynamic prediction is limited due to factors such as
huge computing scales, extended prediction spans, and lacking boundary conditions.

Recent research findings suggest that combining deep learning with hydrodynamic
models is an effective approach for hydrodynamic simulations [7–10]. Xie et al. [7] inte-
grated a physical-process-based model, a BP neural network, and an LSTM neural network
to forecast water levels at specific hydrological stations. The average relative errors of
the simulated water level values at each station, under various forecast scenarios, were
kept below 4%. This demonstrated excellent predictive accuracy. Xue et al. [9] employed
statistical coupling between hydrodynamic modeling and deep learning model outputs to
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enhance the precision of forecasting. Hydrodynamic modeling can usually simulate the
hydrodynamics of an entire basin, even in areas where there are no measuring devices, with
a satisfactory level of accuracy. Additionally, it requires fewer calibration points and can
generate simulated hydrodynamic data for making predictions in unmeasured areas, which
can provide a large amount of high-quality training data for deep learning [11,12]. Never-
theless, process-based models often encounter unfavorable factors, such as uncertainty in
parameters, uncertainty in boundary conditions, and uncertainty in structure [13]. Conse-
quently, the cost of validating the model’s accuracy is significantly increased. Additionally,
the accuracy and range of model predictions are constrained by unknown boundary condi-
tions. Deep learning methods may efficiently build correlations between past and future
data to facilitate predictions, and their integration into hydrodynamic modeling can reduce
processing expenses and render boundary conditions unnecessary.

Deep learning methods are representation learning methods with multi-level rep-
resentations, where each level of representation from the original input is transformed
into a higher, more abstract level of representation, and a non-linear relationship between
the input and output is established through representation learning [14]. They possess
highly generic model architectures and numerous parameters that are derived through
the process of training on data [8]. The inherent structural properties of deep learning
methods eliminate the need to take into account boundary conditions. Instead, these
methods prioritize the acquisition of sufficient data features to make accurate predictions
about future scenarios, relying on a large and reliable historical dataset. It can bypass some
of the intrinsic factor restrictions of mechanism models to achieve reduced modeling costs
and improved prediction accuracy, speed, and span [7]. A long short-term memory (LSTM)
neural network was introduced into flood forecast prediction, which realizes the capture of
nonlinear and periodic relationships in long-time-series hydrodynamic data by coupling
with data dimensionality reduction methods, and the computational time consumption
of the single-step forecast was controlled at the second or minute level, which is a great
performance enhancement compared with traditional mechanism modeling [15,16]. A
convolutional neural network (CNN) was used in conjunction with LSTM to construct a
CNN-LSTM neural network to address the deficiency of LSTM in spatial feature extrac-
tion [17]. In the CNN-LSTM neural network, the spatial features of the input data are
extracted by the convolutional layer and downscaled, and then the temporal features of the
input data are extracted by the LSTM layer, which effectively enhances the prediction ability
of the model in complex hydrological scenarios [18]. However, the traditional CNN-LSTM
architecture suffers from feature loss due to pooling in the CNN, which is unacceptable for
hydrodynamic simulations with increasing accuracy requirements.

In order to overcome the inherent defects of the traditional CNN-LSTM architecture,
an effective approach is to build skip connection parts between the convolutional layers
before and after the LSTM units to complete the feature transfer before pooling leads to
feature loss. The U-Net-LSTM network, a variation of the CNN-LSTM neural network, is
made up of series-connected convolutional units constituting the encoding and decoding
components, as well as LSTM units and skip connection parts connecting these two parts.
Compared with previous architectures, U-Net-LSTM performs better in capturing complex
features, predicts micro-scale features more accurately, and generalizes well due to its
sufficiently high network complexity [19,20]. Hou et al. [21] employed U-Net-LSTM to
analyze the hydrodynamic performance of submarines. The model output matched the
CFD simulation results well, with the mean square error (MSE) lowered by one order of
magnitude compared with the conventional CNN-LSTM architecture, and the computa-
tional time consumption decreased by six orders of magnitude compared with the CFD
model. Due to the input limitation to one dimension, LSTM networks typically need to add
a data dimensionality reduction operation before the input [22]. This results in a certain
loss of spatial features, which is undesirable for hydrodynamic simulations with both
a spatial and temporal predictive nature. A convolutional LSTM (ConvLSTM) network
uses convolutional operations instead of linear operations in LSTM to achieve end-to-end
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deep learning, which improves its spatial-feature-capturing ability and shows excellent
performance in spatiotemporal forecasting [23,24]. In basin-scale hydrodynamic predic-
tions, highly complex flow conditions usually result from strong river–lake interactions
and an irregular topography, which introduce extreme nonlinearities and uncertainties into
hydrodynamic model construction [25]. Combining U-Net and ConvLSTM can utilize the
advantages of both and is a worthwhile solution to this problem.

In this paper, the simulation results of a high-fidelity basin hydrodynamic model were
employed as training and validation data for neural networks. A deep neural network
framework incorporating a hydrodynamic model, U-Net, and ConvLSTM was created for
basin-scale hydrodynamic prediction. The loss function was used to evaluate the model’s
ability to make single-step predictions and multi-step-ahead predictions in the training and
validation sets. A validation of the new framework’s impact on the model performance
was conducted through ablation experiments [26]. The Han River is the primary tributary
in the central section of the Yangtze River. The water environment in its basin has become
increasingly nonlinear and complex due to changes in natural conditions and the impact of
human activities, such as water transfer projects and lock and dam control [27]. This work
focused on evaluating the model’s effectiveness in dealing with complicated nonlinearities
by using the middle and lower portions of the Han River basin as a real-world case study,
which is intended to offer a high-performance computational solution for the large-scale
computational analysis of basins.

2. Materials and Methods
2.1. Research Progress

In this study, the dataset was generated using a one-dimensional hydrodynamic model
based on the Saint-Venant equations of the middle and lower Han River basin [27], and the
simulation results of the flow, water level, flow velocity, and water depth were selected as
the hydrodynamic indicators to be predicted to train the neural network.

The neural network followed a training–validation process, where the optimal model
parameters were obtained in training and the model was evaluated in validation, and the
driving process is shown in Figure 1 and consists of the following three parts.
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2.1.1. Dataset Construction

Hydrodynamic prediction is a typical spatiotemporal prediction problem that requires
modeling the spatiotemporal correlation between the independent variables and the pre-
dicted dependent variables [28]. The hydrodynamic model’s simulation outputs have both
temporal and spatial dimensions. Time was the primary axis in this study, and the first
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three time steps were used as model inputs to produce the output data in the next time step.
Assuming that the current time is t0, the model input data are then ϕ =

(
ϕt0−3, ϕt0−2, ϕt0−1),

and the output data are ϕt0 , where t is time (s), and ϕ(x, t, k) is the hydrodynamic indica-
tor (m3/s, m, or m/s) (different values of k represent different hydrodynamic indicators,
where k ∈ [1 : 4]), abbreviated as ϕt herein. The neural network was trained to establish a
generalized mapping relationship between a and b, as shown in the following equation:

ϕt0 = F(ϕ) (1)

The input and output data made up the samples, and the dataset became a collection of
samples. In order to speed up model convergence, the dataset was preprocessed before
being fed into the model. This ensured that the various data features were kept at the
same scale [29]. In this study, the preprocessing was realized by performing min–max
normalization [30], which aims to scale the value of each feature within [0,1] with the
following equation:

ϕn(x, t, k) =
ϕ(x, t, k)− min(ϕ(x, t, k))

max(ϕ(x, t, k))− min(ϕ(x, t, k))
, k ∈ [1 : 4] (2)

where ϕn represents the normalized data. Equation (2) represents the normalization of each
feature (hydrodynamic indicator) of the data separately. In the next training–validation
process, the dataset was partitioned in the time dimension. Based on Muraina et al.’s
research on dataset divisions [31], the percentage of the training set was determined to
be 70%, and the percentage of the validation set was determined to be 30%, as shown
in Figure 1a. Training is the process of determining the coefficients of the nonlinear
relationship F(ϕ), and validation is the process of making predictions using F(ϕ).

2.1.2. Training and Predictive Processes

The training of neural networks is essentially a loss function non-convex optimization
problem to solve the minimum value, which is supervised learning, as shown in Figure 1b.
It consists of two parts, forward and backward propagation, in which the transformation
of input data ϕ into output data ϕ̂tNt+1 is realized through forward propagation based on
the chain rule, and the output data ϕ̂tNt+1 and the target value ϕtNt+1 are substituted into
the loss function to solve the loss. MSE was selected as the loss function to measure the
difference between the output data and the target data, as shown in the following equation:

MSE =
1
n∑n

i=1 (ϕ
tNt+1
i − ϕ̂

tNt+1
i )

2
(3)

where n represents the size of the sample data, and tNt+1 is the time of the predicted
data [32]. Back-propagation was performed to update the parameters of the model’s
components based on the function values. It started from the output layer, calculated the
contribution of each neuron to the value of the loss function layer by layer, and continued
to pass the loss value to the upper layer, which was also realized by calculating the
gradient through the chain rule [33]. Based on the gradient calculation results, the network
parameters were iteratively updated using the gradient descent optimization algorithm to
achieve the approximation of the minimum value of the loss function. The training was
stopped after determining the model parameters that minimized the loss function and
obtained the trained model for validation.

The prediction process was the validation process of the model. The validation of the
neural network also used forward propagation, with the difference being that at this point,
the model parameters were no longer updated using backpropagation, and only forward
propagation was used to calculate the loss in the output data to measure the model accuracy.
Two forecasting modes were used to validate the accuracy of the model: one was single-
step forecasting, where ϕ always uses the data in the validation set and is not updated
to make informed long-series forecasts. The second was multi-step-ahead forecasting,
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where ϕ is gradually replaced with predicted data for uninformative long-series prediction,
corresponding to the case of missing boundary conditions. The performance evaluation
was carried out using the goodness of fit (R2), root-mean-square error (RMSE), and mean
absolute error (MAE). The exact calculational equations will be given in Section 2.4.1.

2.2. Hydrodynamic Models

The Saint-Venant equations were used to describe the hydrodynamic processes in the
river reach, and the basic equations are as follows [34].

The continuity equation:
∂A
∂t

+
∂Q
∂x

= q (4)

where Q is the river flow (m3/s), x is the length of the channel in the direction of flow (m),
A is the area of the overwater section (m2), t is the time (s), and q is the side stream flow
(m3/s).

The momentum equation:

∂Au
∂t

+
∂Qu
∂x

+ gA
∂z
∂x

+ g
n2

1d|Q||u|
R

4
3

= 0 (5)

where u is the flow velocity in the x-direction (m/s), g is the acceleration of gravity (m/s2),
z is the water level (m), n1d is the roughness, and R is the hydraulic radius (m).

Equations (4) and (5) were rewritten in a conservation format, and the system of control
equations were discretized by the finite volume method using the windward implicit format
to obtain the following equations:

Apϕp = Auϕu + Adϕd + Sϕ (6)

where ϕ is the generalized form of the conservation equation and stands for u or A, Sd is
the source term, and Au and Ad are coefficients, and

AP = Au + Ad − Sd (7)

The detailed calculation of the coefficients will not be repeated here and is described
in Zhang et al.’s research [35]. The original nonlinear equations were decomposed into
linear equations for each river node, and after uniting the equations for each node, a
tridiagonal coefficient matrix was obtained. The hydrodynamic indicators for each node
were obtained by solving using the chase method. The validation of the model showed
that the relative error between the simulated and validated values of the hydrodynamic
indexes was controlled within 5%, which meets the accuracy requirements of a high-fidelity
model [27].

2.3. The U-Net-ConvLSTM Framework

This study developed a U-Net-ConvLSTM neural network framework for basin-scale
hydrodynamic prediction. Figure 2a shows the structure of the deep U-Net-ConvLSTM
neural network, where the 1 × 1 convolutional layer is denoted as K to differentiate
it from the 3 × 3 convolutional layer, and I represents the size of the input data. It is
composed of a U-Net network, a ConvLSTM network, and skip connection sections [36,37].
Functionally, it can be divided into an encoding part, decoding part, ConvLSTM part, and
skip connection part. The encoding part is used to extract features, the ConvLSTM part is
used to learn spatiotemporal features, and the decoding part is used for data upscaling.
The skip connection part is set before the pooling layer of the encoding part, which is
used for direct communication between the encoding part and the decoding part, so that
information lost in the pooling can be passed to the decoding part as much as possible.
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The whole network consists of fourteen network units: nine 3 × 3 convolutional units,
a ConvLSTM unit, and four 1 × 1 convolutional units. The 3 × 3 convolutional unit of the
coding part consists of two sets of 2D 3 × 3 convolutional and ReLU activation layers and
a 2D maximum pooling layer, while the part connected to the ConvLSTM unit is no longer
equipped with a maximal pooling layer. The ConvLSTM unit consists of three ConvLSTM
layers. The 3 × 3 convolutional unit in the decoding part consists of a 2D up-sampling layer
and two sets of 2D convolutional and ReLU activation layers, while a ReLU activation layer
was added in the final output part. The 1 × 1 convolutional unit of the skip connection
part consists of a 1 × 1 convolutional layer. According to Li et al.’s research and Mu et al.’s
research [36,37], the input layer of the encoding part receives batches of temporal data with
dimensions (64, 64, 4, 1, batch size) as the input, which is input to the ConvLSTM part
after dimensionality reduction to learn complex spatiotemporal features, and after that, it
is restored to the previous dimensions after dimensionality upgrading in the decoding part
as the output.

2.3.1. U-Net Neural Network Structures

U-Net is essentially a fully convolutional neural network model, which takes its name
from the shape of its “U”-shaped architecture, as shown in Figure 2b. The backbone of
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U-Net is divided into symmetric left and right parts: on the left is the feature extrac-
tion network (encoder), where the original input data are down-sampled four times by
convolutional–maximum pooling to obtain a feature map at four levels; on the right side is
the feature fusion network (decoder), where the feature maps of each layer level are fused
with the feature maps obtained after back-convolution through the skip connection part;
and the last layer generates predictions by utilizing the acquired features [38]. Its network
layer composition was described in the previous section, with the difference being that the
connections in the encoding and decoding sections are changed and the skip connection
section does not have a convolutional layer. The unique structure allows U-Net to capture
pixel-level variations in images [38], which means it is well suited to learning complex
spatial features in fluid dynamics data.

2.3.2. ConvLSTM Neural Network Structures

The ConvLSTM network incorporates the advantages of CNN and LSTM networks,
which means it can automatically learn hierarchical representations of input data, capturing
both low-level spatial details and high-level temporal patterns [39]. The structure of
ConvLSTM is similar to LSTM, in which convolutional operations are integrated, as shown
in Figure 2c. Its key components are a cell state Ct, input gate it, forget gate ft, and output
gate ot. The cell state Ct is used to transmit information, the input gate it is used to receive
input data, the forget gate ft is used to compress the data, and the output gate ot is used to
output the data with the cell state.

The essential equations of ConvLSTM are as follows:

it = σ
(

Wxi ∗ Xt + Whi ∗ Ht−1 + Wci
⊙

Ct−1 + bi

)
(8)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f
⊙

Ct−1 + b f

)
(9)

Ct = ft
⊙

Ct−1 + it
⊙

tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (10)

ot = σ
(

Wxo ∗ Xt + Who ∗ Ht−1 + Wco
⊙

Ct−1 + bo

)
(11)

Ht = ot
⊙

tanh(Ct) (12)

where Ht is the hidden state, and the Hadamard product
⊙

combines information from
different components. Unlike LSTM, the input data of ConvLSTM are tensors in three
dimensions and thus can effectively capture spatiotemporal information.

2.4. Predictive Model Accuracy Validation

In order to fully validate the feasibility of the model and evaluate the model perfor-
mance, the model in Section 2.2 was applied to the hydrodynamic simulation of the middle
and lower reaches of the Han River for the period from 2001 to 2020 in order to generate
long-time-series spatiotemporal data, and the network was trained and validated using the
generated data, applying the network framework to a real case.

Ablation experiments were conducted to comparatively validate the performance of the
U-Net-ConvLSTM framework. Based on the CNN, the ConvLSTM part (CNN-ConvLSTM)
and the skip connection part (U-Net) were added (U-Net-ConvLSTM), and their performances
were evaluated for comparison. Simultaneously, as outlined in Section 2.1.2, both single-step
prediction and multi-step-ahead prediction were employed to examine the short-term
forecasting ability of the model and the feasibility of long-term forecasting.

2.4.1. Model Evaluation Index

In this study, the model’s performance was assessed using the standard regression
parameter R2, as well as the error indexes RMSE and MAE, with reference to Moriasi‘s
research [40]:
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1. Goodness of fit (R2):

R2 =
[∑n

i=1 (ϕ
tNt+1
i −ϕ

tNt+1
i )(ϕ̂

tNt+1
i − ϕ̂

tNt+1
i )]2

∑n
i=1 (ϕ

tNt+1
i −ϕ

tNt+1
i )2∑n

i=1 (ϕ̂
tNt+1
i − ϕ̂

tNt+1
i )2

(13)

2. Root-mean-square error (RMSE):

RMSE =

√
1
n∑n

i=1

(
ϕ

tNt+1
i − ϕ̂

tNt+1
i

)2
(14)

3. Mean absolute error (MAE):

MAE =
1
n∑n

i=1

∣∣∣ϕtNt+1
i − ϕ̂

tNt+1
i

∣∣∣ (15)

The model’s performance is considered better when the R2 value approaches 1 and the
RMSE and MAE values approach 0.

2.4.2. The Case Study

The Han River, which has a total length of more than 1570 km and is the largest
tributary of the Yangtze River, rises in the Qinling Mountains, flows through the provinces
of Shaanxi and Hubei, and joins the Yangtze River near Wuhan. The river basin lies
between latitudes 30◦ and 34◦ north and longitudes 106◦ and 114◦ east. The Danjiangkou
Reservoir forms the border of the Han River. The middle and lower sections of the river
run below it, connecting Zhongxiang and Wuhan in the lower reaches and Danjiangkou
to Zhongxiang in the middle [41]. Figure 3 depicts the extent of the Han River’s middle
and lower reaches. The middle and lower reaches of the Han River are divided into six
sections by five reservoir dams, with a total of 157 cross-sections. The thalweg of the
river is shown in Figure S1. The profile of the elevation distribution of the cross-sections
is shown in Figures S2 and S3. The hydrodynamic model was constructed based on the
spatial locations of these 157 cross-sections and outputs the hydrodynamic information
of each cross-section and also serves as the input data for the neural network model. As
per the specifications outlined in Section 2.3, the input data for the neural network model
underwent a transformation from a size of (157, 4) at time t = Nt to a size of (64, 64, 4,
1, 1), with any extra space being filled with zeros. Similarly, the data generated at time
t = Nt + 1 were resized from (64, 64, 4, 1, 1) to (157, 4) in order to be used in the following
data analysis.

The hydrodynamic conditions of the middle and lower reaches of the Han River
are extremely complex under the influence of the construction and operation of graded
reservoirs, the withdrawal and recession of water from locks and dams along the river,
inter-area inflow and outflow, and downstream top-support. The complex data characteris-
tics brought challenges to the model construction, but with enough sample training, the
generalization ability of the model was improved, which was beneficial for the following
generalization and application of the model.

The network model was optimally tuned using Adam’s algorithm for parameter
weights, the epoch was set to 1000, the initial learning rate was 0.0001, and an early-stop
strategy was introduced to terminate the model training. The environment used was a CPU
of Intel i7-11850H, a GPU of NVIDIA GTX4080Ti (16 G RAM), and Python 3.10. The number
of trainable parameters was 80073690. Mu et al. [37] produced the code for employing
U-Net-ConvLSTM for video prediction and also part of the code base for this work. On this
basis, the U-Net-ConvLSTM framework was created based on the PyTorch architecture,
which is divided into functional modules such as dataset pretreatment, training, prediction,
and visualization post-processing.
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3. Results and Discussion

In this section, the single-step forecasting results of ConvLSTM-U-Net are first ana-
lyzed in comparison with the simulation results of the hydrodynamic model to assess the
accuracy and performance of the neural network. The results of the ablation experiments
are then parsed to illustrate the advantages offered by the network structure. Finally, the
results of the network’s multi-step-ahead forecasting are characterized to test the network’s
ability to predict long time series.

3.1. Single-Step Forecasting

U-Net-ConvLSTM was used for the single-step hydrodynamic prediction of 157 sec-
tions, 2113 days, and 4 hydrodynamic indicators on the entire validation set and compared
with the hydrodynamic model results, as shown in Figure 4. The subplots in Figure 4
reflect the spatial and temporal characteristics of the four hydrodynamic indicators. It
can be observed that the hydrodynamic indicators have great heterogeneity in both time
and space, with complex changes in characteristics. The U-Net-LSTM prediction results
match with the hydrodynamic simulation results, which effectively captures the changing
characteristics of the indicators.

In Figure 4a, it can be seen that there exists a large flooding process at around 900 days,
and there is a corresponding trend in Figure 4b–d. U-Net-ConvLSTM predicts this trend
well and agrees with the hydrodynamic simulation results in terms of intensity, extent,
and duration. Furthermore, the majority of the flow is distributed within the range of 0 to
4000 m3/s. Similarly, the water level is predominantly distributed between 20 and 60 m,
while the flow velocities mostly fall within the range of 0 to 1.5 m/s. Additionally, the water
depths are primarily distributed between 2 and 10 m. These patterns are effectively captured
by the U-Net-ConvLSTM model, and the extrapolated outcomes exhibit a significant level of
agreement with the hydrodynamic simulations. In Figure 4c,d, the flow velocity and water
depth show high volatility in both time and space, and it can be seen that the model learns
the fluctuation characteristics of the data after training and matches the hydrodynamic
simulation results in the extreme regions, such as low and high values.
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To further evaluate the forecasting accuracy of U-Net-ConvLSTM, the distribution of
predicted and target values is described using scatter density plots, as shown in Figure 5.
The four hydrodynamic indicators have an R2 above 0.99, the degree of difference is
negligible, and there is a strong linear link between the predicted values and target values.
The probability density distribution demonstrates that the linear correlation stays strong
within the region where the data is most concentrated, suggesting that the model is capable
of accurately predicting the majority of the hydrodynamic data characteristics. The slope
and intercept of the fitted linear regression line indicate the degree of agreement between
the predicted value and the target value. A slope close to one and an intercept close to zero
suggest a strong agreement between the predicted and target values. The flow exhibits the
smallest slope, 0.9822, among the four indicators, while the intercept exhibits the largest,
17.639. Both values fall within the ideal range, indicating a strong alignment between the
predicted and target values. This suggests a high level of accuracy in predicting the four
indicators.

The model evaluation metrics from Section 2.4.1 were used for the prediction per-
formance evaluation, and the results are shown in Table 1. The RMSE and MAE values
have a positive connection with the magnitude of the indicator, consistently remaining at a
low level. This suggests that the model possesses a strong capability to accurately forecast
future time-step results.

Regarding computational efficiency, it is noteworthy that the GPU time required for a
single-step prediction using U-Net-ConvLSTM is 0.03 s, while the CPU time for a single-step
prediction using the hydrodynamic model is 0.07 s. The utilization of U-Net-ConvLSTM
efficiently decreases the hydrodynamic prediction time cost, as evidenced by a 62.08%
reduction in the computational time for the neural network. Furthermore, the network
training process takes approximately 12 h. When compared with the costly expenses
associated with developing hydrodynamic models, a neural network model offers a more
affordable and efficient alternative for predicting hydrodynamic outcomes, requiring only
minimal training.
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Table 1. Evaluation results of single-step forecasting for U-Net-ConvLSTM.

Hydrodynamic Indicators R2 RMSE MAE

Flow 0.9920 76.4779 17.6770
Water level 0.9999 0.0943 0.0482

Flow velocity 0.9957 0.0134 0.0052
Water depth 0.9987 0.0852 0.0272

3.2. Ablation Experiments

The CNN-ConvLSTM network, U-Net network, and U-Net-ConvLSTM network are
employed for training and validation in this section, respectively. Their performances on
the training sets and validation sets during training are documented to comparatively
assess the impacts of incorporating the ConvLSTM part and the skip connection part on
the predictive capabilities of the models.

The performances of the three networks during training are illustrated in Figure 6. It
examines how the RMSE of the single-iteration prediction results varies with the number
of iterations for different network architectures. Overall, U-Net-ConvLSTM has the lowest
RMSE on both the training sets and validation sets, U-Net has a slightly higher RMSE than
U-Net-ConvLSTM, and CNN-ConvLSTM is comparatively poor in predictive performance.
The RMSE fluctuation range of U-Net is similar to that of U-Net-ConvLSTM. However,
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as depicted in the inset in Figure 6, toward the end of the training, the RMSE of U-Net
surpasses that of U-Net-ConvLSTM, providing evidence for the superiority of the U-Net-
ConvLSTM framework.
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The predictive accuracies of the three network frameworks on the training and valida-
tion sets after completing the training process are displayed in Table 2. The inclusion of
the skip connection part in U-Net-ConvLSTM resulted in a significant average reduction
of 33.34% in the RMSE of the predictors compared with CNN-ConvLSTM. Similarly, the
addition of the ConvLSTM part in U-Net led to an average drop of 1.68% in the RMSE of
the predictors. The inclusion of either the skip connection component or the ConvLSTM
component is observed to have a beneficial effect on the accuracy of predictions. The
model’s performance is further enhanced when both modules are used.

Table 2. Evaluation results of three frameworks.

Hydrodynamic
Indicators

RMSE
Dataset CNN-ConvLSTM U-Net U-Net-ConvLSTM

Flow
Training 42.3749 22.3903 22.3873

Validation 111.1455 77.3260 76.4779

Water level
Training 0.1267 0.0682 0.0689

Validation 0.1655 0.0954 0.0943

Flow velocity Training 0.0116 0.0078 0.0077
Validation 0.0180 0.0137 0.0134

Water depth Training 0.0604 0.0534 0.0491
Validation 0.1090 0.0858 0.0852

3.3. Multi-Step-Ahead Forecasting

The prediction accuracy of the model from 1 day to 5 days was explored on the
validation set to assess the ability of the model to create multi-step-ahead forecasts, and
the RMSE, MAE, and R2 of the forecasting results for the four hydrodynamic metrics are
presented in Figure 7. As time progresses, the prediction accuracy continues to diminish,
and errors accumulate, with the average RMSE of the four measures increasing to 4.3 times
that on day 1 on day 5, and the average MAE increasing to 5.1 times that on day 1 on day 5.
In general, the R2 is consistently maintained at a high level, decreasing by approximately
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8% on average for the entire duration. The minimal value of R2 is above 0.7, indicating that
the model’s multi-step-ahead forecasting are still fairly dependable [40].
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Furthermore, as illustrated in Figure S4, U-Net-ConvLSTM demonstrates superior
performance compared with U-Net and CNN-ConvLSTM. This is due to the fact that
the accumulation of little errors can lead to significant variations in the outcomes of
subsequent multi-step predictions. Consequently, U-Net-ConvLSTM is the more favorable
option when subjected to thorough evaluation. The time required for multi-step-ahead
prediction using the model is similar to that for single-step prediction. U-Net-ConvLSTM
demonstrates the ability to forecast hydrodynamic outcomes with high accuracy over
an extended duration in a relatively short timeframe. Furthermore, it can predict future
hydrodynamic circumstances even when boundary conditions are not provided. This
effectively addresses the constraints of conventional hydrodynamic mechanism models and
improves the computing efficiency of large-scale hydrodynamic simulation and prediction.

Accurate and complete historical datasets are the primary guarantee for the predic-
tion accuracy of neural networks, but real data in practical settings generally encounter
challenges such as missing data, low quality, and multi-source heterogeneity, which inhibit
the application of neural networks [8]. The data obtained from hydrodynamic modeling
effectively address this limitation and offer numerous high-quality datasets for U-Net-
ConvLSTM. In addition, the predictive capability of U-Net-ConvLSTM diminishes as the
prediction timeframe increases. To maintain prediction accuracy, data assimilation with
hydrodynamic simulation results is considered as the next research focus [39]. The deep
integration of deep learning with hydrodynamic modeling effectively compensates for the
limitations of both in hydrodynamic prediction.
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4. Conclusions

This paper constructed a deep learning framework called U-Net-ConvLSTM based on
the hydrodynamic model, in which the hydrodynamic model offers precise and compre-
hensive spatiotemporal datasets of hydrodynamic indicators for U-Net-ConvLSTM. On the
other hand, U-Net-ConvLSTM addresses the computational challenges arising from large
computational scales, long prediction spans, and boundary uncertainties by establishing a
connection between historical and future data. The integration of both components allows
the model to attain precise and effective hydrodynamic forecasts in a large-scale basin, even
when boundary conditions are not available. The main research findings are as follows:

(1) U-Net-ConvLSTM demonstrated excellent predictive performance on a long-series
hydrodynamic dataset generated by a high-fidelity mechanistic model. It achieved an
overall R2 value above 0.99 and closely matched the results of the CFD simulation.
Additionally, both the RMSE and MAE were maintained at a low level. U-Net-
ConvLSTM decreased the time taken for single-step prediction by 62.08% when
compared with conventional mechanistic models. These findings suggest that the
proposed framework is stable and capable of accurately and efficiently predicting
future time-step results.

(2) When compared with CNN-ConvLSTM and U-Net, U-Net-ConvLSTM proved its
usefulness by reducing the RMSE values used to calibrate the prediction error on the
entire dataset by 33.34% and 1.68% after incorporating the skip connection part and
the ConvLSTM part, respectively.

(3) The model’s prediction horizon expanded from 1 to 5 days, resulting in a loss of just
8% in the R2 value. Despite this decline, the R2 value remained above 0.7, indicating
a high level of accuracy. This demonstrates the model’s robustness and reliability in
making multi-step-ahead predictions and also exemplifies the usability of the model
in the case of lacking boundary conditions.

U-Net-ConvLSTM is capable of capturing the intricate nonlinear characteristics of
large-scale hydrodynamic spatiotemporal data. This enables more precise and efficient
hydrodynamic predictions while also facilitating the high-performance computing of basin-
scale hydrodynamics.
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Abbreviations

R2 Goodness of fit
CFD Computational fluid dynamics
LSTM Long short-term memory
CNN Convolutional neural network
ConvLSTM Convolutional LSTM
MSE Mean square error
RMSE Root-mean-square error
MAE Mean absolute error
Nomenclature
u The flow velocity in the x-direction (m/s)
Q The river flow (m3/s)
x The length of the channel along the direction of flow (m)
z Water level (m)
t/t0 Time (s)

ϕt/ϕ(x, t, k)

Hydrodynamic indicator:
k = 1—flow (m3/s)
k = 2—water level (m)
k = 3—flow velocity (m/s)
k = 4—water depth (m)

ˆ Simulated values:

K
Markers for distinguishing between 1 × 1 convolutional layers and 3×3
convolutional layers

I The size of the input data
A The area of the overwater section (m2)
q The side stream flow (m3/s)
g The acceleration of gravity (m/s2)
n1d The roughness
R The hydraulic radius (m)
Ap/Au/Ad The coefficients [10]
ϕp/ϕu/ϕd The generalized form of the conservation equation and stands for u or A
Sϕ Source term
Ct Cell state
it Input gate
ft Forget gate
ot Output gate
Ht The hidden state⊙

The Hadamard product
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