Occurrence and Distribution of Fluoride in Groundwater and Drinking Water Vulnerability of a Tropical Dry Region of Andhra Pradesh, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
3. Results
3.1. Regional Scale Study on Occurrence of Fluoride in Groundwater
3.2. Assessment of Physicochemical Parameters of Water in the Study Area
3.3. Assessment of Local Scale Occurrence of Fluoride in Water
3.4. Intake of Fluoride and Its Future Status
3.5. Source–Based Fluoride Concentration and Their Zonation
3.6. The Main Source of Water in the Study Area
4. Discussion
4.1. Present Status of Groundwater in Comparison with the Existing Study
4.2. Global Overview of Fluoride Occurrence and Associated Health Impacts
4.3. Study Unveiled the Possible Reasons and Factors behind the Fluoride Exposure
4.4. Exposure to Fluoride Contamination and Associated Health Impacts
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karthikeyan, K.; Nanthakumar, K.; Velmurugan, P.; Tamilarasi, S.; Lakshmanaperumalsamy, P. Prevalence of certain inorganic constituents in groundwater samples of Erode district, Tamilnadu, India, with special emphasis on fluoride, fluorosis and its remedial measures. Environ. Monit. Assess. 2010, 160, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, R.C. Fluoride in drinking water and its removal. J. Hazard. Mater. 2006, 137, 456–463. [Google Scholar]
- Podgorski, J.; Berg, M. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 2022, 13.1, 4232. [Google Scholar] [CrossRef]
- Das, K.; Mondal, N.K. Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of Laxmisagar, Simlapal Block of Bankura District, WB, India. Environ. Monit. Assess. 2016, 188, 218. [Google Scholar] [CrossRef] [PubMed]
- Araya, D.; Podgorski, J.; Kumi, M.; Mainoo, P.A.; Berg, M. Fluoride contamination of groundwater resources in Ghana: Country–wide hazard modeling and estimated population at risk. Water Res. 2022, 212, 118083. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Groundwater fluoride contamination, probable release, and containment mechanisms: A review on Indian context. Environ. Geochem. Health 2018, 40, 2259–2301. [Google Scholar] [CrossRef]
- Jacks, G.; Bhattacharya, P.; Chaudhary, V.; Singh, K.P. Controls on the genesis of some high fluoride groundwaters in India. Appl. Geochem. 2005, 20, 221–228. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Ma, T.; Ma, R. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China. J. Geochem. Explor. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- He, J.; Yang, Y.; Wu, Z.; Xie, C.; Zhang, K.; Kong, L.; Liu, J. Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng. 2020, 8, 104516. [Google Scholar] [CrossRef]
- Jha, S.K.; Nayak, A.K.; Sharma, Y.K. Fluoride occurrence and assessment of exposure dose of fluoride in shallow aquifers of Makur, Unnao district Uttar Pradesh, India. Environ. Monit. Assess. 2009, 156, 561–566. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.; Venkatesh, A.S.; Udayabhanu, G.; Sahoo, P.R. Medical Geological assessment of fluoride contaminated groundwater in parts of Indo–Gangetic Alluvial plains. Sci. Rep. 2019, 9, 16243. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality. 2017. Available online: https://iris.who.int/bitstream/handle/10665/254637/9789241549950–eng.pdf?sequence=1 (accessed on 18 January 2024).
- Xiao, Y.; Liu, K.; Hao, Q.; Li, Y.; Xiao, D.; Zhang, Y. Occurrence, controlling factors and health hazards of fluoride–enriched groundwater in the lower flood plain of Yellow River, Northern China. Expo. Health 2022, 14, 345–358. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, R.; Arfin, T.; Neeti, K. Fluoride contamination, consequences and removal techniques in water: A review. Environ. Sci.: Adv. 2022, 1, 620–661. [Google Scholar] [CrossRef]
- Molina–Frechero, N.; Nevarez–Rascón, M.; Nevarez–Rascón, A.; González–González, R.; Irigoyen–Camacho, M.E.; Sánchez–Pérez, L.; López–Verdin, S.; Bologna–Molina, R. Impact of dental fluorosis, socioeconomic status and self–perception in adolescents exposed to a high level of fluoride in water. Int. J. Environ. Res. Public Health 2017, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Central Groundwater Board (CGWB) Yearbook. 2015. Available online: https://www.cgwb.gov.in/cgwbpnm/public/uploads/documents/16859490001103678817file.pdf (accessed on 18 January 2024).
- Tukey, J.W. Exploratory Data Analysis; THETA, Statistical Genetics Group: Wrocław, Poland, 1977; Volume 2, pp. 131–160. [Google Scholar]
- Sujatha, D. Fluoride levels in the groundwater of the south–eastern part of Ranga Reddy district, Andhra Pradesh, India. Environ. Geol. 2003, 44, 587–591. [Google Scholar] [CrossRef]
- Rao, N.S. High–fluoride groundwater. Environ. Monit. Assess. 2011, 176, 637–645. [Google Scholar] [PubMed]
- Reddy AG, S.; Reddy, D.V.; Rao, P.N.; Prasad, K.M. Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India. Environ. Monit. Assess. 2010, 171, 561–577. [Google Scholar] [CrossRef]
- Reddy, B.; Sunitha, V.; Reddy, M. Fluoride and nitrate geochemistry of groundwater from kadiri, mudigubba and nallamada mandals of anantapur district, Andhra Pradesh, India. J. Agric. Eng. Biotechnol. 2013, 1, 37. [Google Scholar] [CrossRef]
- Adimalla, N.; Venkatayogi, S.; Das, S.V.G. Assessment of fluoride contamination and distribution: A case study from a rural part of Andhra Pradesh, India. Appl. Water Sci. 2019, 9, 94. [Google Scholar] [CrossRef]
- Suneetha, M.; Sundar, B.S.; Ravindhranath, K. Ground water quality status with respect to fluoride contamination in Vinukonda Mandal, Guntur District, Andhra Pradesh, India and defluoridation with activated carbons. Int. J. ChemTech Res. 2015, 7, 93–107. [Google Scholar]
- Rao, N.S.; Ravindra, B.; Wu, J. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2316–2348. [Google Scholar]
- IS 10500:2012; Specification for Drinking Water. BIS (Bureau of Indian Standards): New Delhi, India, 2012. Available online: https://law.resource.org/pub/in/bis/S06/is.10500.2012.pdf (accessed on 18 December 2023).
- Jagtap, S.; Yenkie, M.K.; Labhsetwar, N.; Rayalu, S. Fluoride in drinking water and defluoridation of water. Chem. Rev. 2012, 112, 2454–2466. [Google Scholar] [CrossRef] [PubMed]
- Brindha, K.; Rajesh, R.; Murugan, R.; Elango, L. Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. Environ. Monit. Assess. 2011, 172, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Solanki, Y.S.; Agarwal, M.; Gupta, A.B.; Gupta, S.; Shukla, P. Fluoride occurrences, health problems, detection, and remediation methods for drinking water: A comprehensive review. Sci. Total Environ. 2022, 807, 150601. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Doshi, C.S.; Paliwal, B.L. Occurrence and Chemistry of High Fluoride Groundwaters in Jalore District of Western Rajasthan. Ann. Arid. Zone ANA 2 BX 1986, 25, 225–264. [Google Scholar]
- Gupta, S.; Banerjee, S.; Saha, R.; Datta, J.K.; Mondal, N. Fluoride geochemistry of groundwater in Nalhati–1 block of the Birbhum district, West Bengal, India. Fluoride 2006, 39, 318. [Google Scholar]
- Sharma, S.K. Water Resources of Madhya Pradesh: Contemporary Issues and Challenges. Water Sci. Sustain. 2021, 2021, 109–125. [Google Scholar]
- Ali, S.; Kumari, M.; Gupta, S.K.; Sinha, A.; Mishra, B.K. Investigation and mapping of fluoride–endemic areas and associated health risk—A case study of Agra, Uttar Pradesh, India. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 590–604. [Google Scholar] [CrossRef]
- Jacks, G. Fluoride in groundwater: Mobilization, trends, and remediation. In Groundwater Assessment, Modeling, and Management; CRC Press: Boca Raton, FL, USA, 2016; pp. 339–349. [Google Scholar]
- Rao, N.S. The occurrence and behaviour of fluoride in the groundwater of the Lower Vamsadhara River basin, India. Hydrol. Sci. J. 1997, 42, 877–892. [Google Scholar] [CrossRef]
- Bhagavan, S.V.B.K.; Raghu, V. Utility of check dams in dilution of fluoride concentration in ground water and the resultant analysis of blood serum and urine of villagers, Anantapur District, Andhra Pradesh, India. Environ. Geochem. Health 2005, 27, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Rani, K.U.; Sharma, K.L.; Ramachandran, K.; Bindu, V.H. Assessment of Ground Water Quality in Different Villages Situated near Musi River Basin in Ghatkesar Mandal of Ranga Reddy District in Andhra Pradesh. Indian J. Dryland Agric. Res. Dev. 2007, 22, 89–94. [Google Scholar]
- Indu, R.; Krishnan, S.; Shah, T. Impacts of groundwater contamination with fluoride and arsenic: Affliction severity, medical cost and wage loss in some villages of India. Int. J. Rural Manag. 2007, 3, 69–93. [Google Scholar] [CrossRef]
- Yadav, K.K.; Kumar, V.; Gupta, N.; Kumar, S.; Rezania, S.; Singh, N. Human health risk assessment: Study of a population exposed to fluoride through groundwater of Agra city, India. Regul. Toxicol. Pharmacol. 2019, 106, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.; Bartam, J.; Williams, A.; Overbo, A.; Fuente, D.; Geere, J.A. Domestic Water Quantity, Service Level and Health, 2nd ed.; World Health Organization: Geneva, Switzerland, 2020; Licence: CC BY-NC-SA 3.0 IGO; Available online: https://iris.who.int/bitstream/handle/10665/338044/9789240015241-eng.pdf?sequence=1 (accessed on 2 February 2024).
- Mapoma HW, T.; Xie, X.; Liu, Y.; Zhu, Y.; Kawaye, F.P.; Kayira, T.M. Hydrochemistry and quality of groundwater in alluvial aquifer of Karonga, Malawi. Environ. Earth Sci. 2017, 76, 335. [Google Scholar] [CrossRef]
- Battaleb–Looie, S.; Moore, F.; Jacks, G.; Ketabdari, M.R. Geological sources of fluoride and acceptable intake of fluoride in an endemic fluorosis area, southern Iran. Environ. Geochem. Health 2012, 34, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Mutileni, N.; Mudau, M.; Edokpayi, J.N. Water quality, geochemistry and human health risk of groundwater in the Vyeboom region, Limpopo province, South Africa. Sci. Rep. 2023, 13, 19071. [Google Scholar] [CrossRef]
- Demelash, H.; Beyene, A.; Abebe, Z.; Melese, A. Fluoride concentration in ground water and prevalence of dental fluorosis in Ethiopian Rift Valley: Systematic review and meta–analysis. BMC Public Health 2019, 19, 1298. [Google Scholar] [CrossRef]
- Tekle–Haimanot, R.; Melaku, Z.; Kloos, H.; Reimann, C.; Fantaye, W.; Zerihun, L.; Bjorvatn, K. The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci. Total Environ. 2006, 367, 182–190. [Google Scholar] [CrossRef]
- Alabdula’aly, A.I. Fluoride content in drinking water supplies of Riyadh, Saudi Arabia. Environ. Monit. Assess. 1997, 48, 261–272. [Google Scholar] [CrossRef]
- Zoran, M.; Curcic, M.; Antonijevic, B.; Carevic, M.; Mandic, J.; Djukic–Cosic, D.; Lekic, C.P. Fluoride in drinking water and dental fluorosis. Sci. Total Environ. 2010, 408, 3507–3512. [Google Scholar]
- Xiang, Q.; Liang, Y.; Chen, L.; Wang, C.; Chen, B.; Chen, X.; Zhou, M.; Shanghai, P.R. Effect of fluoride in drinking water on children’s intelligence. Fluoride 2003, 36, 84–94. [Google Scholar]
- Hudak, P.F.; Sanmanee, S. Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the woodbine aquifer of North–Central Texas. Environ. Monit. Assess. 2003, 82, 311–320. [Google Scholar] [CrossRef]
- Valenzuela–Vasquez, L.; Ramirez–Hernandez, J.; Reyes–Lopez, J.; Sol–Uribe, A.; Lazaro–Mancilla, O. The origin of fluoride in groundwater supply to Hermosillo City, Sonora, Mexico. Environ. Geol. 2006, 51, 17–27. [Google Scholar] [CrossRef]
- Moe, C.L.; Rheingans, R.D. Global challenges in water, sanitation, and health. J. Water Health 2006, 4, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Aleixo, B.; Pena, J.L.; Heller, L.; Rezende, S. Infrastructure is a necessary but insufficient condition to eliminate inequalities in access to water: Research of a rural community intervention in Northeast Brazil. Sci. Total Environ. 2019, 652, 1445–1455. [Google Scholar] [CrossRef]
- Mustafa, S.; Jamil, K.; Zhang, L.; Girmay, M.B. Does Public Awareness Matter to Achieve the UN’s Sustainable Development Goal 6: Clean Water for Everyone? J. Environ. Public Health 2022, 2022, 8445890. [Google Scholar] [CrossRef] [PubMed]
- Massoud, M.A.; Al–Abady, A.; Jurdi, M.; Nuwayhid, I. The challenges of sustainable access to safe drinking water in rural areas of developing countries: Case of Zawtar El–Charkieh, Southern Lebanon. J. Environ. Health 2010, 72, 24–30. [Google Scholar]
- Pink, R.M. Water Rights in Southeast Asia and India; Palgrave Macmillan: New York, NY, USA, 2016; pp. 1–14. [Google Scholar]
- Ghosh, A.; Mukherjee, K.; Ghosh, S.K.; Saha, B. Sources and toxicity of fluoride in the environment. Res. Chem. Intermed. 2013, 39, 2881–2915. [Google Scholar] [CrossRef]
- Sakshi, S.; Flora, S.J.S. Fluoride in drinking water and skeletal fluorosis: A review of the global impact. Curr. Environ. Health Rep. 2020, 7, 140–146. [Google Scholar]
- Ayoob, S.; Gupta, A.K. Fluoride in drinking water: A review on the status and stress effects. Crit. Rev. Environ. Sci. Technol. 2006, 36, 433–487. [Google Scholar] [CrossRef]
- Garduño, H.; Foster, S.; Raj, P.; van Steenbergen, F. Addressing groundwater depletion through community–based management actions in the weathered granitic basement aquifer of drought–prone Andhra Pradesh–India. GW–MATE Case Profile Collect. 2009, 19, 51824. [Google Scholar]
- Hamilton, S. Community–Based Groundwater Management in Andhra Pradesh, India. Doctoral Dissertation, University of Otago, Dunedin, New Zealand, 2012. [Google Scholar]
- Kumar, P.; Singh, C.K.; Saraswat, C.; Mishra, B.; Sharma, T. Evaluation of aqueous geochemistry of fluoride enriched groundwater: A case study of Patan district, Gujarat, Western India. Water Sci. 2017, 31, 215–229. [Google Scholar] [CrossRef]
pH | Turbidity (NTU) | TDS (mg/L) | F− (mg/L) | Cl− (mg/L) | NO2− (mg/L) | Br− (mg/L) | NO3− (mg/L) | PO43− (mg/L) | SO42− (mg/L) | |
---|---|---|---|---|---|---|---|---|---|---|
Minimum | 7.5 | 2.3 | 72 | 0.10 | 12.1 | 0.71 | 0.60 | 0.98 | 1.39 | 0.39 |
Maximum | 9.25 | 48.6 | 734 | 1.84 | 922.8 | 4.01 | 15.31 | 256.87 | 1.75 | 333.54 |
Mean | 8.07 | 6.5 | 392 | 0.70 | 261.4 | 1.59 | 2.89 | 64.59 | 1.51 | 91.40 |
Coefficient of Variation (CV) | 0.38 | 10.6 | 186 | 0.49 | 273.0 | 1.05 | 3.44 | 70.33 | 0.16 | 94.74 |
Standard Deviation (±SD) | 0.05 | 1.6 | 0.5 | 0.70 | 1.0 | 0.66 | 1.19 | 1.09 | 0.10 | 1.04 |
Standard Error (±SE) | 0.09 | 2.5 | 43.8 | 0.11 | 64.3 | 0.25 | 0.81 | 16.58 | 0.04 | 22.33 |
Permissible Limit | 6.5 to 8.5 | 1 | 500 | 1 | 250 | –– | –– | 45 | 200 | |
Maximum Permissible Limit (BIS, 2012) * [26] | No relaxation (NR) | 5 | 2000 | 1.5 | 1000 | –– | –– | NR | 400 | |
Maximum Permissible Limit WHO (2017) [13] | 6.5–8.5 | 5 | 1000 | 1.5 | 250 | 3 | –– | 50 | 0.01 | 250 |
Source | Water Sample ID | Fluoride (mg/L) | Chloride (mg/L) | Nitrite (mg/L) | Bromide (mg/L) | Nitrate (mg/L) | Phosphate (mg/L) | Sulphate (mg/L) |
---|---|---|---|---|---|---|---|---|
Outside Supply | D1 | 0.10 | 12.16 | 0.90 | 0.60 | 0.98 | NA | 7.74 |
Tanks | T1 | 0.54 | 112.53 | NA | 1.06 | 1.62 | NA | 43.00 |
T2 | 0.50 | 57.68 | 0.95 | 1.57 | 13.37 | NA | 20.59 | |
Ponds | P1 | 0.21 | 93.89 | NA | 2.00 | 4.50 | 1.40 | 15.42 |
P2 | 0.27 | 86.24 | 0.78 | 0.77 | 11.96 | NA | 0.39 | |
Wells | W1 | 0.43 | 444.76 | 1.96 | 3.61 | 45.08 | 1.75 | 100.33 |
W2 | 0.41 | 301.41 | 1.45 | 1.51 | 256.87 | NA | 105.04 | |
W3 | 0.44 | 166.64 | 0.71 | 1.66 | 105.63 | NA | 68.54 | |
Household Water | H1 | 0.78 | 87.56 | 0.77 | 1.06 | 55.95 | NA | 42.09 |
H2 | 1.84 | 922.77 | 4.02 | 5.00 | 54.87 | NA | 333.54 | |
H3 | 1.54 | 747.45 | 3.74 | 0.89 | 62.39 | 1.44 | 255.64 | |
H4 | 1.39 | 696.49 | 1.03 | 5.77 | 88.69 | NA | 245.67 | |
H5 | 0.42 | 415.42 | 1.90 | 3.90 | 89.63 | 1.47 | 136.39 | |
H6 | 0.86 | 198.30 | NA | 15.31 | 144.10 | NA | 82.42 | |
H7 | 0.58 | 109.28 | 0.72 | 1.63 | 24.75 | NA | 41.50 | |
H8 | 1.13 | 89.44 | 1.66 | 0.93 | 12.17 | NA | 32.29 | |
H9 | 0.29 | 74.99 | 2.24 | 1.88 | 179.15 | NA | 81.00 | |
H10 | 0.86 | 88.52 | 1.09 | 2.85 | 11.00 | NA | 33.62 |
Serial No. | F− (mg/L) | No. of Water Samples | Water Sample ID | Remarks |
---|---|---|---|---|
1 | >1.5 | 2 | H2, H3 | Unacceptable for drinking purpose |
2 | 1.5–1.0 | 2 | H4, H8 | Fairly acceptable |
3 | <1.0 | 14 | D1, T1, T2, P1, P2, W1, W2, W3, GW1, H5, H6, H7, H9, H10 | Acceptable for drinking |
Family ID | Number of Members | Total Water Consumed by Family (L/Day) | Source | Sample Name | Amount of Fluoride (mg/L) | Total Intake of F−/Family/Day (L) | Intake of Family/Year (L) |
---|---|---|---|---|---|---|---|
Family-1 | 2 | 9.4 | Underground Tap water | H1 | 0.78 | 7.4 | 2684.4 |
Family-2 | 5 | 21 | Drinking water | H2 | 0.10 | 2.1 | 752.7 |
Family-3 | 2 | 10 | Drinking water | H3 | 0.10 | 0.98 | 358.4 |
Family-4 | 4 | 17 | Drinking water | H4 | 0.10 | 1.7 | 609.3 |
Family-5 | 4 | 19 | Drinking water | H5 | 0.10 | 1.9 | 681 |
Family-6 | 2 | 10 | Drinking water | H6 | 0.10 | 0.98 | 358.4 |
Family-7 | 3 | 15 | Drinking water | H7 | 0.10 | 1.5 | 537.7 |
Family-8 | 4 | 20 | Drinking water | H8 | 0.10 | 1.96 | 716.9 |
Family-9 | 4 | 16 | Drinking water | H9 | 0.10 | 1.6 | 573.5 |
Family-10 | 5 | 23 | Drinking water | H10 | 0.10 | 2.3 | 824.4 |
Family ID | Family Members | Age | Total Water Consumed | Source | Amount of Fluorine (mg/L) | Total Intake per Day (mg/L) | Total Intake per Year (mg/L) |
---|---|---|---|---|---|---|---|
Family-1 | Member 1 | 71 | 4.9 L | Underground tap water | 0.78 | 3.84 | 1399.32 |
Member 2 | 57 | 4.5 L | 0.78 | 3.53 | 1285.1 |
Source | Sample Name | Average | Maximum | Minimum |
---|---|---|---|---|
Outside supply | D1 | 0.098 | 0.098 | 0.098 |
Tanks | T1, T2 | 0.52 | 0.54 | 0.5 |
Ponds | P1, P2 | 0.24 | 0.3 | 0.2 |
Household water | H1, H2, H3, H4, H5, H6, H7, H8, H9, H10 | 0.98 | 1.84 | 0.3 |
Wells | W1, W2, W3 | 0.43 | 0.44 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasaswini, G.; Kushala, S.; Santhosh, G.S.V.; Naik, M.T.K.; Mondal, M.; Dey, U.; Das, K.; Sarkar, S.; Kumar, P. Occurrence and Distribution of Fluoride in Groundwater and Drinking Water Vulnerability of a Tropical Dry Region of Andhra Pradesh, India. Water 2024, 16, 577. https://doi.org/10.3390/w16040577
Yasaswini G, Kushala S, Santhosh GSV, Naik MTK, Mondal M, Dey U, Das K, Sarkar S, Kumar P. Occurrence and Distribution of Fluoride in Groundwater and Drinking Water Vulnerability of a Tropical Dry Region of Andhra Pradesh, India. Water. 2024; 16(4):577. https://doi.org/10.3390/w16040577
Chicago/Turabian StyleYasaswini, Gaddam, Sambani Kushala, Ganjikunta S. V. Santhosh, Mude T. K. Naik, Mijanur Mondal, Uttiya Dey, Kousik Das, Soumyajit Sarkar, and Pankaj Kumar. 2024. "Occurrence and Distribution of Fluoride in Groundwater and Drinking Water Vulnerability of a Tropical Dry Region of Andhra Pradesh, India" Water 16, no. 4: 577. https://doi.org/10.3390/w16040577
APA StyleYasaswini, G., Kushala, S., Santhosh, G. S. V., Naik, M. T. K., Mondal, M., Dey, U., Das, K., Sarkar, S., & Kumar, P. (2024). Occurrence and Distribution of Fluoride in Groundwater and Drinking Water Vulnerability of a Tropical Dry Region of Andhra Pradesh, India. Water, 16(4), 577. https://doi.org/10.3390/w16040577