Growth, Oxidative Stress and Ability to Degrade Tetrabromobisphenol A of Phanerochaete chrysosporium in the Presence of Different Nano Iron Oxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Strain and Culture Medium
2.3. Inoculation Preparation
2.4. Culture Condition
2.5. Measurement of Fungal Biomass
2.6. Oxidative Stress Determination
2.7. Degradation and Adsorption of TBBPA by Phanerochaete chrysosporium Coupled with Different Nano Iron Oxides
2.8. Statistical Analysis
3. Results and Discussion
3.1. Changes in Biomass of Phanerochaete chrysosporium
3.2. Effect of Nano Iron Oxides on Oxidative Stress in Phanerochaete chrysosporium
3.2.1. Intracellular H2O2 Content
3.2.2. Intracellular SOD and CAT Activities
3.2.3. Extracellular LDH Activity and Intracellular MDA Content
3.3. Degradation and Adsorption of TBBPA by Phanerochaete chrysosporium Coupled with Different Nano Iron Oxides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uhnáková, B.; Ludwig, R.; Pěknicová, J.; Homolka, L.; Lisá, L.; Šulc, M.; Petříčková, A.; Elzeinová, F.; Pelantová, H.; Monti, D.; et al. Biodegradation of tetrabromobisphenol A by oxidases in basidiomycetous fungi and estrogenic activity of the biotransformation products. Bioresour. Technol. 2011, 102, 9409–9415. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, L.; Zheng, M.; Lin, Y.; Liu, A.; Wang, Y.; Li, Y. Identification of lower brominated bisphenol A analogs as the photooxidation products of tetrabromobisphenol A bis(2,3-dibromopropyl) ether (TBBPA-BDBPE). Sci. Total Environ. 2023, 890, 164227. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, J.; Fan, L.; Jia, R. Studies on the characteristics and mechanism of aerobic biodegradation of tetrabromobisphenol A by Irpex lacteus F17. J. Basic Microbiol. 2021, 61, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Khoso, W.A.; Haleem, N.; Baig, M.A.; Jamal, Y. Synthesis, characterization and heavy metal removal efficiency of nickel ferrite nanoparticles (NFN’s). Sci. Rep. 2021, 11, 3790. [Google Scholar] [CrossRef] [PubMed]
- Geetha, K.; Udhayakumar, R.; Manikandan, A. Enhanced magnetic and photocatalytic characteristics of cerium substituted spinel MgFe2O4 ferrite nanoparticles. Phys. B Condens. Matter 2021, 615, 413083. [Google Scholar] [CrossRef]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Lai, C.; Zhao, M.H.; Wei, Z.; Li, N.J.; Huang, C.; Xie, G.X. Adsorption of Pb (II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: Equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem. Eng. J. 2012, 203, 423–431. [Google Scholar] [CrossRef]
- Huang, D.; Li, T.; Xu, P.; Zeng, G.; Chen, M.; Lai, C.; Cheng, M.; Guo, X.; Chen, S.; Li, Z. Deciphering the Fenton-reaction-aid lignocellulose degradation pattern by Phanerochaete chrysosporium with ferroferric oxide nanomaterials: Enzyme secretion, straw humification and structural alteration. Bioresour. Technol. 2019, 276, 335–342. [Google Scholar] [CrossRef]
- Huang, D.-L.; Wang, C.; Xu, P.; Zeng, G.-M.; Lu, B.-A.; Li, N.-J.; Huang, C.; Lai, C.; Zhao, M.-H.; Xu, J.-J.; et al. A coupled photocatalytic-biological process for phenol degradation in the Phanerochaete chrysosporium-oxalate-Fe3O4 system. Int. Biodeterior. Biodegrad. 2015, 97, 115–123. [Google Scholar] [CrossRef]
- Xie, J.; Ming, Z.; Li, H.; Yang, H.; Yu, B.; Wu, R.; Liu, X.; Bai, Y.; Yang, S.-T. Toxicity of graphene oxide to white rot fungus Phanerochaete chrysosporium. Chemosphere 2016, 151, 324–331. [Google Scholar] [CrossRef]
- Hu, L.; Wan, J.; Zeng, G.; Chen, A.; Chen, G.; Huang, Z.; He, K.; Cheng, M.; Zhou, C.; Xiong, W.; et al. Comprehensive evaluation of the cytotoxicity of CdSe/ZnS quantum dots in Phanerochaete chrysosporium by cellular uptake and oxidative stress. Environ. Sci. Nano 2017, 4, 2018–2029. [Google Scholar] [CrossRef]
- Zhang, L.; Dong, H.; Zhang, J.; Chen, Y.; Zeng, G.; Yuan, Y.; Cao, W.; Fang, W.; Hou, K.; Wang, B.; et al. Influence of FeONPs amendment on nitrogen conservation and microbial community succession during composting of agricultural waste: Relative contributions of ammonia-oxidizing bacteria and archaea to nitrogen conservation. Bioresour. Technol. 2019, 287, 121463. [Google Scholar] [CrossRef]
- Cheng, Y.; Cheng, Y.; Zheng, H.; Song, Y.; Li, R.; Wan, F.; Li, J. Evaluation and Comparison of the Toxic Effects of MgO NPs, ZnO NPs, α-Fe2O3 NPs, γ-Fe2O3 NPs, and Fe3O4 NPs on the Remediation for Cadmium-Related Effects in Wheat Seedlings. Water Air Soil Pollut. 2020, 231, 471. [Google Scholar] [CrossRef]
- Voss, L.; Yilmaz, K.; Burkard, L.; Vidmar, J.; Stock, V.; Hoffmann, U.; Pötz, O.; Hammer, H.S.; Peiser, M.; Braeuning, A.; et al. Impact of iron oxide nanoparticles on xenobiotic metabolism in HepaRG cells. Arch. Toxicol. 2020, 94, 4023–4035. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, N.; Lan, Q.; Zhang, X.; Wu, L.; Liu, J.; Yang, R. Laccase inducer Mn2+ inhibited the intracellular degradation of norfloxacin by Phanerochaete chrysosporium. Int. Biodeterior. Biodegrad. 2021, 164, 105300. [Google Scholar] [CrossRef]
- Pellinen, J.; Abuhasan, J.; Joyce, T.W.; Chang, H.M. Biological delignification of pulp by Phanerochaete chrysosporium. J. Biotechnol. 1989, 10, 161–170. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, R.; Chen, C. The Nano–Bio Interactions of Nanomedicines: Understanding the Biochemical Driving Forces and Redox Reactions. Acc. Chem. Res. 2019, 52, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Mi, F.; Jiahua, Z.; Jun, Z.; Yuanyu, Y.; Yushou, G. The performance and mechanism of triphenyl phosphate biodegradation by Phanerochaete chrysosporium. China Environ. Sci. 2020, 40, 4919–4926. [Google Scholar]
- Ming, Z.; Feng, S.; Yilihamu, A.; Ma, Q.; Yang, S.; Yang, S.-T. Toxicity of Pristine and Chemically Functionalized Fullerenes to White Rot Fungus Phanerochaete chrysosporium. Nanomaterials 2018, 8, 120. [Google Scholar] [CrossRef] [PubMed]
- Ming, Z.; Feng, S.; Yilihamu, A.; Yang, S.; Ma, Q.; Yang, H.; Bai, Y.; Yang, S.T. Toxicity of carbon nanotubes to white rot fungus Phanerochaete chrysosporium. Ecotoxicol. Environ. Saf. 2018, 162, 225–234. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Q.; Yang, S.; Yilihamu, A.; Shi, M.; Ouyang, B.; Guan, X.; Yang, S.T. Toxicity of nanodiamonds to white rot fungi Phanerochaete chrysosporium through oxidative stress. Colloids Surf. B Biointerfaces 2020, 187, 110658. [Google Scholar] [CrossRef]
- Lee, J.; Hwang, J.-S.; Hwang, I.-S.; Cho, J.; Lee, E.; Kim, Y.; Lee, D.G. Coprisin-induced antifungal effects in Candida albicans correlate with apoptotic mechanisms. Free. Radic. Biol. Med. 2012, 52, 2302–2311. [Google Scholar] [CrossRef]
- Chen, Z.; Song, S.; Wen, Y.; Zou, Y.; Liu, H. Toxicity of Cu (II) to the green alga Chlorella vulgaris: A perspective of photosynthesis and oxidant stress. Environ. Sci. Pollut. Res. Int. 2016, 23, 17910–17918. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Yin, H.; Peng, H.; Liu, Z.; Lu, G.; Dang, Z. Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. Environ. Pollut. 2017, 228, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.; Du, J.; Wang, Z.; Wu, Q. Effects of yttrium under lead stress on growth and physiological characteristics of Microcystis aeruginosa. J. Rare Earths 2016, 34, 747–756. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, H.; Li, Q.; Gao, N.; Yao, Y.; Xu, H. Combined remediation of Cd–phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae. Ecotoxicol. Environ. Saf. 2015, 120, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Shuihua, Z.; Qibing, M.; Jing, M. Toxicity study of iron tetroxide nanoparticles and carbon nanotubes on A549 cells. J. Toxicol. 2008, 22, 365–367. [Google Scholar]
- Wei, B.; Chengcheng, Z.; Wenjun, J.; Zhiyong, Z.; Yuliang, Z. Progress in studies on environmental behaviors and toxicological effects of nanomaterials. Asian J. Ecotoxicol. 2009, 4, 174–182. [Google Scholar]
- Zhou, Q.; Wang, Y.; Xiao, J.; Zhan, Y. Preparation of magnetic core-shell Fe3O4@polyaniline composite material and its application in adsorption and removal of tetrabromobisphenol A and decabromodiphenyl ether. Ecotoxicol. Environ. Saf. 2019, 183, 109471. [Google Scholar] [CrossRef]
- Li, N.; Liu, J.; Yang, R.; Wu, L. Distribution, characteristics of extracellular polymeric substances of Phanerochaete chrysosporium under lead ion stress and the influence on Pb removal. Sci. Rep. 2020, 10, 17633. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Liu, L.; Qi, H.; You, H. Biodegradation of decabromodiphenyl ethane (DBDPE) by white-rot fungus Pleurotus ostreatus: Characteristics, mechanisms, and toxicological response. J. Hazard. Mater. 2022, 424, 127716. [Google Scholar] [CrossRef]
- Li, M.; Zhang, C. γ-Fe2O3 nanoparticle-facilitated bisphenol A degradation by white rot fungus. Sci. Bull. 2016, 61, 468–472. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Yu, J.; Wang, X.; Chen, L.; Jiang, H.; Zhang, W. Growth, Oxidative Stress and Ability to Degrade Tetrabromobisphenol A of Phanerochaete chrysosporium in the Presence of Different Nano Iron Oxides. Water 2024, 16, 567. https://doi.org/10.3390/w16040567
Li N, Yu J, Wang X, Chen L, Jiang H, Zhang W. Growth, Oxidative Stress and Ability to Degrade Tetrabromobisphenol A of Phanerochaete chrysosporium in the Presence of Different Nano Iron Oxides. Water. 2024; 16(4):567. https://doi.org/10.3390/w16040567
Chicago/Turabian StyleLi, Ningjie, Jieyu Yu, Xiaojie Wang, Liu Chen, Hong Jiang, and Wenjie Zhang. 2024. "Growth, Oxidative Stress and Ability to Degrade Tetrabromobisphenol A of Phanerochaete chrysosporium in the Presence of Different Nano Iron Oxides" Water 16, no. 4: 567. https://doi.org/10.3390/w16040567
APA StyleLi, N., Yu, J., Wang, X., Chen, L., Jiang, H., & Zhang, W. (2024). Growth, Oxidative Stress and Ability to Degrade Tetrabromobisphenol A of Phanerochaete chrysosporium in the Presence of Different Nano Iron Oxides. Water, 16(4), 567. https://doi.org/10.3390/w16040567