Removal of Heavy Metals and Bulk Organics towards Application in Modified Constructed Wetlands Using Activated Carbon and Zeolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Pre-Processing of Adsorbents
2.3. Cation Exchange Capacity (CEC)
2.4. Heavy Metal Precipitation Pre-Tests
2.5. Adsorption Batch Tests
2.6. Constructed Wetlands Column Tests
2.7. Data Evaluation
3. Results and Discussion
3.1. Zeolite Cation Exchange Capacity
3.2. Effects of pH on HM Precipitation
3.3. Removal Efficiency and Loading Rates in Batch Tests
3.4. Removal Efficiency in Column Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241549950. [Google Scholar]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Springer: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.; Badenberg, S.; Wulff, M.; Drewes, J.; Helmreich, B. Evaluation of Factors Influencing Lab-Scale Studies to Determine Heavy Metal Removal by Six Sorbents for Stormwater Treatment. Water 2016, 8, 62. [Google Scholar] [CrossRef]
- Wen, J.; Dong, H.; Zeng, G. Application of zeolite in removing salinity/sodicity from wastewater: A review of mechanisms, challenges and opportunities. J. Clean. Prod. 2018, 197, 1435–1446. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Z.; Sheng, S.; Pan, F.; Chen, F.; Fu, J. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Sci. Total Environ. 2020, 701, 134736. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Hao, N.; Cao, J.; Ye, J.; Zhang, C.; Li, C.; Bate, B. Content and morphology of lead remediated by activated carbon and biochar: A spectral induced polarization study. J. Hazard. Mater. 2021, 411, 124605. [Google Scholar] [CrossRef]
- Fu, J.; Lee, W.-N.; Coleman, C.; Meyer, M.; Carter, J.; Nowack, K.; Huang, C.-H. Pilot investigation of two-stage biofiltration for removal of natural organic matter in drinking water treatment. Chemosphere 2017, 166, 311–322. [Google Scholar] [CrossRef]
- Abedi, T.; Mojiri, A. Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environ. Technol. Innov. 2019, 16, 100472. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, T.; Yi, W.; Zhang, T.; Zhang, Y. The release mechanism of heavy metals from lab-scale vertical flow constructed wetlands treating road runoff. Environ. Sci. Pollut. Res. Int. 2019, 26, 16588–16595. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; He, Y.; Li, H. Aquatic toxicity of heavy metal-containing wastewater effluent treated using vertical flow constructed wetlands. Sci. Total Environ. 2020, 727, 138616. [Google Scholar] [CrossRef]
- Dan, A.; Oka, M.; Fujii, Y.; Soda, S.; Ishigaki, T.; Machimura, T.; Ike, M. Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Sci. Total Environ. 2017, 584–585, 742–750. [Google Scholar] [CrossRef]
- Zhan, L.; You, Y.; Zhao, L.; Hao, N.; Bate, B. A study on the competitive adsorption process of NH4+ and Zn2+ on activated carbon and zeolite. Int. J. Environ. Sci. Technol. 2022, 20, 6039–6052. [Google Scholar] [CrossRef]
- Australian Government; Australian High Commission New Delhi; Victorian Government; Indian Institute of Technology Kanpur; National Mission for Clean Ganga and World Bank. Jajmau Tannery Industry Road Map to Sustainable Waste Management: A Model for the Ganga Basin; Earth Systems: Melbourne, Australia, 2013. [Google Scholar]
- Younas, F.; Niazi, N.K.; Bibi, I.; Afzal, M.; Hussain, K.; Shahid, M.; Aslam, Z.; Bashir, S.; Hussain, M.M.; Bundschuh, J. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. J. Hazard. Mater. 2022, 422, 126926. [Google Scholar] [CrossRef]
- Dixit, S.; Yadav, A.; Dwivedi, P.D.; Das, M. Toxic hazards of leather industry and technologies to combat threat: A review. J. Clean. Prod. 2015, 87, 39–49. [Google Scholar] [CrossRef]
- Puigdomènech, I.; Colàs, E.; Grivé, M.; Campos, I.; García, D. A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. MRS Proc. 2014, 1665, 111–116. [Google Scholar] [CrossRef]
- DIN EN ISO 11885:2009-09; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) (ISO 11885:2007). German Version EN ISO 11885:2009. Beuth Verlag GmbH: Berlin, Germany, 2009.
- DIN EN 1484:2019-04; Water Analysis—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). German Version EN 1484:1997. Beuth Verlag GmbH: Berlin, Germany, 2019.
- Crittenden, J.C.; Trussell, R.R.; Hand, D.W.; Howe, K.J.; Tchobanoglous, G. MWH’s Water Treatment: Principles and Design, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9781118103777. [Google Scholar]
- Malekian, R.; Abedi-Koupai, J.; Eslamian, S.S.; Mousavi, S.F.; Abbaspour, K.C.; Afyuni, M. Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Appl. Clay Sci. 2011, 51, 323–329. [Google Scholar] [CrossRef]
- Wasielewski, S.; Rott, E.; Minke, R.; Steinmetz, H. Evaluation of Different Clinoptilolite Zeolites as Adsorbent for Ammonium Removal from Highly Concentrated Synthetic Wastewater. Water 2018, 10, 584. [Google Scholar] [CrossRef]
- Pohl, A. Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents. Water Air Soil Pollut. 2020, 231, 503. [Google Scholar] [CrossRef]
- Marković, J.; Jović, M.; Smičiklas, I.; Pezo, L.; Šljivić-Ivanović, M.; Onjia, A.; Popović, A. Chemical speciation of metals in unpolluted soils of different types: Correlation with soil characteristics and an ANN modelling approach. J. Geochem. Explor. 2016, 165, 71–80. [Google Scholar] [CrossRef]
- Pan, Y.; Bonten, L.T.; Koopmans, G.F.; Song, J.; Luo, Y.; Temminghoff, E.J.; Comans, R.N. Solubility of trace metals in two contaminated paddy soils exposed to alternating flooding and drainage. Geoderma 2016, 261, 59–69. [Google Scholar] [CrossRef]
- Wang, L.K.; Vaccari, D.A.; Li, Y.; Shammas, N.K. Chemical Precipitation. Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA, 2005; pp. 141–197. [Google Scholar]
- Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review. Environ. Pollut. 2010, 158, 3447–3461. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Zhang, Y.; Wang, H.; Tang, J.; Li, Y.; Wang, S. Removal of Cr(VI) from wastewater by artificial zeolite spheres loaded with nano Fe–Al bimetallic oxide in constructed wetland. Chemosphere 2020, 257, 127224. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Chen, N.; Feng, C.; Gao, Y. Mechanisms of Cr(VI) removal by FeCl3-modified lotus stem-based biochar (FeCl3@LS-BC) using mass-balance and functional group expressions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 551, 17–24. [Google Scholar] [CrossRef]
- Zhang, W.; Zou, L.; Wang, L. Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Appl. Catal. A Gen. 2009, 371, 1–9. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Xu, Z.; Zhang, L.; Dai, Y.; Tang, X.; Tao, R.; Li, R.; Yang, Y.; Tai, Y. Effect of heavy metals in mixed domestic-industrial wastewater on performance of recirculating standing hybrid constructed wetlands (RSHCWs) and their removal. Chem. Eng. J. 2020, 379, 122363. [Google Scholar] [CrossRef]
- Kinraide, T.B.; Yermiyahu, U. A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J. Inorg. Biochem. 2007, 101, 1201–1213. [Google Scholar] [CrossRef]
- Yuna, Z. Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environ. Eng. Sci. 2016, 33, 443–454. [Google Scholar] [CrossRef]
- Yeh, T.Y.; Chou, C.C.; Pan, C.T. Heavy metal removal within pilot-scale constructed wetlands receiving river water contaminated by confined swine operations. Desalination 2009, 249, 368–373. [Google Scholar] [CrossRef]
- Schellenberg, T.; Subramanian, V.; Ganeshan, G.; Tompkins, D.; Pradeep, R. Wastewater Discharge Standards in the Evolving Context of Urban Sustainability–The Case of India. Front. Environ. Sci. 2020, 8, 30. [Google Scholar] [CrossRef]
- Di Luca, G.A.; Maine, M.A.; Mufarrege, M.M.; Hadad, H.R.; Sánchez, G.C.; Bonetto, C.A. Metal retention and distribution in the sediment of a constructed wetland for industrial wastewater treatment. Ecol. Eng. 2011, 37, 1267–1275. [Google Scholar] [CrossRef]
- Vymazal, J.; Kröpfelová, L. Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow; Springer: Dordrecht, The Netherlands, 2008; ISBN 9781402085802. [Google Scholar]
- Si, Z.; Wang, Y.; Song, X.; Cao, X.; Zhang, X.; Sand, W. Mechanism and performance of trace metal removal by continuous-flow constructed wetlands coupled with a micro-electric field. Water Res. 2019, 164, 114937. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Xu, J. Improving Winter Performance of Constructed Wetlands for Wastewater Treatment in Northern China: A Review. Wetlands 2014, 34, 243–253. [Google Scholar] [CrossRef]
- Yadav, A.K.; Abbassi, R.; Kumar, N.; Satya, S.; Sreekrishnan, T.R.; Mishra, B.K. The removal of heavy metals in wetland microcosms: Effects of bed depth, plant species, and metal mobility. Chem. Eng. J. 2012, 211–212, 501–507. [Google Scholar] [CrossRef]
- Guo, X.; Cui, X.; Li, H. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands. Sci. Total Environ. 2020, 703, 134788. [Google Scholar] [CrossRef] [PubMed]
Supplier | Zeolite | SiO3 (%) | Al2O3 (%) | Fe2O3 (%) | CaO (%) | K2O (%) |
---|---|---|---|---|---|---|
Zeobon GmbH | Zeogran K 80 | 71.60 | 12.46 | 1.52 | 3.19 | 3.27 |
Zeocem Inc. | ZeoAqua | 68.83 | 12.25 | 1.40 | 3.09 | 3.11 |
Labradorit GmbH | Carpathian Zeolite | 70.31 | 12.26 | 1.30 | 3.25 | 2.86 |
Supplier | GAC Type | Iodine Number (mg/g) | spec. Inner Surface (m2/g) | Raw Material | Activation |
---|---|---|---|---|---|
Chemviron | Filtrasorb 400 | 1050 | 1050 | Bituminous coal | Steam |
Chemviron | HPC Super 830 | 900 | - | - | - |
Cabot | Norit GAC 830W | 975 | 1100 | Hard coal | Steam |
Cabot | Norit GAC 1240W | 960 | 1100 | Hard coal | Steam |
Chemviron | Cyclecarb 401 | 900 | 900 | Pool recyclate | Thermal |
Chemviron | Cyclecarb 501 | - | - | HPC Super 830 recyclate | Thermal |
Parameter | C (mg/L) | M (g/mol) | c (mmol/L) |
---|---|---|---|
Cu2+ | 5 | 63.54 | 0.079 |
Zn2+ | 5 | 65.38 | 0.077 |
Ni2+ | 5 | 58.69 | 0.085 |
Cr3+ | 5 | 51.99 | 0.096 |
Pb2+ | 5 | 207.20 | 0.024 |
Cd2+ | 5 | 112.41 | 0.045 |
Na+ | 76.13 | 22.99 | 3.31 |
K+ | 21.13 | 39.08 | 0.541 |
Mg2+ | 7.39 | 24.30 | 0.304 |
Ca2+ | 64.54 | 40.07 | 1.61 |
Cl− | 83.40 | 35.45 | 2.35 |
SO42− | 207.21 | 96.05 | 2.16 |
F− | 0.10 | 18.99 | 0.005 |
PO43− | 0.70 | 94.97 | 0.007 |
NO3− | 5 | 62.01 | 0.081 |
Parameter | Pre-Filtered Primary Effluent |
---|---|
pH | 8.03 ± 0.20 |
Total dissolved solids (TDS) (mg/L) | 1516 ± 285 |
Conductivity (µS/cm) | 2097 ± 399 |
DOC (mg/L) | 20.77 ± 7.89 |
Spectral absorption coefficient (SAC 254) (1/m) | 0.554 ± 0.259 |
NH4-N (mg/L) | 70.0 ± 10.0 |
Cu (mg/L) | 0.145 ± 0.076 |
Fe (mg/L) | 0.446 ± 0.152 |
Mn (mg/L) | 0.027 ± 0.010 |
Zn (mg/L) | 0.034 ± 0.017 |
Ni (mg/L) | 0.008 ± 0.005 |
Cd (mg/L) | 0.006 ± 0.002 |
Pb (mg/L) | 0.001 ± 0.001 |
Cr total (mg/L) | 0.041 ± 0.016 |
Zeolite | Adsorbed | Desorbed | Exchanged Cations | |||
---|---|---|---|---|---|---|
NH4+ (meq/100 g) | Na+ (meq/100 g) | K+ (meq/100 g) | Mg2+ (meq/100 g) | Ca2+ (meq/100 g) | CEC (meq/100 g) | |
Zeogran K 80 | 127.1 | 14.7 | 37.6 | 3.8 | 71.9 | 128.0 |
ZeoAqua | 125.3 | 14.9 | 36.8 | 3.9 | 68.6 | 124.2 |
Carpathian Zeolite | 114.1 | 4.2 | 33.9 | 5.2 | 67.3 | 110.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ofiera, L.M.; Bose, P.; Kazner, C. Removal of Heavy Metals and Bulk Organics towards Application in Modified Constructed Wetlands Using Activated Carbon and Zeolites. Water 2024, 16, 511. https://doi.org/10.3390/w16030511
Ofiera LM, Bose P, Kazner C. Removal of Heavy Metals and Bulk Organics towards Application in Modified Constructed Wetlands Using Activated Carbon and Zeolites. Water. 2024; 16(3):511. https://doi.org/10.3390/w16030511
Chicago/Turabian StyleOfiera, Luca M., Purnendu Bose, and Christian Kazner. 2024. "Removal of Heavy Metals and Bulk Organics towards Application in Modified Constructed Wetlands Using Activated Carbon and Zeolites" Water 16, no. 3: 511. https://doi.org/10.3390/w16030511
APA StyleOfiera, L. M., Bose, P., & Kazner, C. (2024). Removal of Heavy Metals and Bulk Organics towards Application in Modified Constructed Wetlands Using Activated Carbon and Zeolites. Water, 16(3), 511. https://doi.org/10.3390/w16030511