Global Meta-Analysis of Nitrate Leaching Vulnerability in Synthetic and Organic Fertilizers over the Past Four Decades
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Criteria through Online Research Databases and Study Selection
- Chemical (synthetic) or organic fertilizers must have been used in each study.
- At least one fertilizer application rate must have been mentioned.
- NO3−-N leaching must have been monitored.
2.2. Meta-Analysis
3. Results
3.1. Effect of Fertilizer Type on NO3−-N Leaching as a Function of Crop Type
3.2. Effect of Nitrogen Source on NO3−-N Leaching
3.3. Effect of Fertilizer Type on NO3−-N Leaching as a Function of Soil Properties
3.4. Effect of Fertilizer Type on NO3−-N Leaching as a Function of Measuring Method
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jenkinson, D.S. The impact of humans on the nitrogen cycle, with focus on temperate arable agriculture. Plant Soil 2001, 228, 3–15. [Google Scholar] [CrossRef]
- Govindasamy, P.; Muthusamy, S.K.; Bagavathiannan, M.; Mowrer, J.; Jagannadham, P.T.K.; Maity, A.; Halli, H.M.; Sujayanand, G.K.; Vadivel, R.; Das, T.K.; et al. Nitrogen use efficiency—A key to enhance crop productivity under a changing climate. Front. Plant Sci. 2023, 14, 1121073. [Google Scholar] [CrossRef]
- Giordano, M.; Petropoulos, S.A.; Rouphael, Y. The Fate of Nitrogen from Soil to Plants: Influence of Agricultural Practices in Modern Agriculture. Agriculture 2021, 11, 944. [Google Scholar] [CrossRef]
- Ongley, E.D.; Xiaolan, Z.; Tao, Y. Current status of agricultural and rural non-point source Pollution assessment in China. Environ. Pollut. 2010, 158, 1159–1168. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Goulding, K.W.T.; Shanahan, J.F. Chapter 15—Proven Practices and Innovative Technologies for On-Farm Crop Nitrogen Management. In Nitrogen in the Environment, 2nd ed.; Hatfield, J.L., Follett, R.F., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 483–517. [Google Scholar]
- FAOSTATS. FAOSTAT Statistics Database. Available online: https://www.fao.org/faostat (accessed on 2 August 2022).
- Schröder, J.J.; Scholefield, D.; Cabral, F.; Hofman, G. The effects of nutrient losses from agriculture on ground and surface water quality: The position of science in developing indicators for regulation. Environ. Sci. Policy 2004, 7, 15–23. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhao, X.; Teng, Y.; Li, X.; Zhang, J.; Wu, J.; Zuo, R. Groundwater Nitrate Pollution and Human Health Risk Assessment by using HHRA Model in an Agricultural Area, NE China. Ecotoxicol. Environ. Saf. 2017, 137, 130–142. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr. Cycl. Agroecosystems 2002, 64, 237–256. [Google Scholar] [CrossRef]
- Dalgaard, T.; Bienkowski, J.F.; Bleeker, A.; Dragosits, U.; Drouet, J.L.; Durand, P.; Frumau, A.; Hutchings, N.J.; Kedziora, A.; Magliulo, V.; et al. Farm Nitrogen Balances in six European landscapes as an Indicator for Nitrogen losses and Basis for Improved Management. Biogeosciences 2012, 9, 5303–5321. [Google Scholar] [CrossRef]
- Nolan, B.T.; Stoner, J.D. Nutrients in Groundwaters of the Conterminous United States, 1992–1995. Environ. Sci. Technol. 2000, 34, 1156–1165. [Google Scholar] [CrossRef]
- Li, T.; Hao, X.; Kang, S. Spatial Variability of Grape Yield and Its Association with Soil Water Depletion Within A Vineyard of Arid Northwest China. Agric. Water Manag. 2017, 179, 158–166. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Sieling, K.; Kage, H. N balance as an indicator of N leaching in an oilseed rape—Winter wheat—Winter barley rotation. Agric. Ecosyst. Environ. 2006, 115, 261–269. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Lægdsmand, M.; Olesen, J.E. Crop growth and nitrogen turnover under increased temperatures and low autumn and winter light intensity. Agric. Ecosyst. Environ. 2010, 139, 187–194. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Cooperband, L.R.; MacGuidwin, A.E. Strategies to reduce nitrate leaching into groundwater in potato grown in sandy soils: Case study from North Central USA. Am. J. Potato Res. 2010, 87, 229–244. [Google Scholar] [CrossRef]
- Hansen, B.; Kristensen, E.; Grant, R.; Høgh-Jensen, H.; Simmelsgaard, S.E.; Olesen, J.E. Nitrogen leaching from conventional versus organic farming systems—A systems modelling approach. Eur. J. Agron. 2000, 13, 65–82. [Google Scholar] [CrossRef]
- Stopes, C.; Lord, E.I.; Philipps, L.; Woodward, L. Nitrate leaching from organic farms and conventional farms following best practice. Soil Use Manag. 2002, 18, 256–263. [Google Scholar] [CrossRef]
- Torstensson, G.; Aronsson, H.; Bergström, L. Nutrient Use Efficiencies and Leaching of Organic and Conventional Cropping Systems in Sweden. Agron. J. 2006, 98, 603–615. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Askegaard, M.; Lægdsmand, M.; Olesen, J.E. Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crops Res. 2012, 125, 129–138. [Google Scholar] [CrossRef]
- Kirchmann, H.; Bergström, L. Do organic farming practices reduce nitrate leaching? Commun. Soil Sci. Plant Anal. 2001, 32, 997–1028. [Google Scholar] [CrossRef]
- Mondelaers, K.; Aertsens, J.; Van Huylenbroeck, G. A meta-analysis of the differences in environmental impacts between organic and conventional farming. Br. Food J. 2009, 111, 1098–1119. [Google Scholar] [CrossRef]
- Korsaeth, A. Relations between nitrogen leaching and food productivity in organic and conventional cropping systems in a long-term field study. Agric. Ecosyst. Environ. 2008, 127, 177–188. [Google Scholar] [CrossRef]
- Benoit, M.; Garnier, J.; Anglade, J.; Billen, G. Nitrate leaching from organic and conventional arable crop farms in the Seine Basin (France). Nutr. Cycl. Agroecosyst. 2014, 100, 285–299. [Google Scholar] [CrossRef]
- Quemada, M.; Baranski, M.; Nobel-de Lange, M.N.J.; Vallejo, A.; Cooper, J.M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef]
- Boy-Roura, M.; Cameron, K.C.; Di, H.J. Identification of nitrate leaching loss indicators through regression methods based on a meta-analysis of lysimeter studies. Environ. Sci. Pollut. Res. 2016, 23, 3671–3680. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, H.; Yin, Y.; Zheng, H.; Cui, Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci. Total Environ. 2019, 657, 96–102. [Google Scholar] [CrossRef]
- Li, Z.J.; Reichel, R.; Xu, Z.F.; Vereecken, H.; Brüggemann, N. Return of crop residues to arable land stimulates NO emission but mitigates NO leaching: A meta-analysis. Agron. Sustain. Dev. 2021, 41, 66. [Google Scholar] [CrossRef]
- Gardner, J.B.; Drinkwater, L.E. The fate of nitrogen in grain cropping systems: A meta-analysis of 15N field experiments. Ecol. Appl. 2009, 19, 2167–2184. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Qasim, W.; Xia, L.; Lin, S.; Wan, L.; Zhao, Y.; Butterbach-Bahl, K. Global greenhouse vegetable production systems are hotspots of soil N2O emissions and nitrogen leaching: A meta-analysis. Environ. Pollut. 2021, 272, 116372. [Google Scholar] [CrossRef]
- Ren, F.; Sun, N.; Misselbrook, T.; Wu, L.; Xu, M.; Zhang, F.; Xu, W. Responses of crop productivity and reactive nitrogen losses to the application of animal manure to China’s main crops: A meta-analysis. Sci. Total Environ. 2022, 850, 158064. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; The, P.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Harrer, M.; Cuijpers, P.; Furukawa, T.A.; Ebert, D.D. Doing Meta-Analysis with R: A Hands-On Guide, 1st ed.; Chapman & Hall/CRC Press: Boca Raton, FL, USA; London, UK, 2021. [Google Scholar]
- Schwarzer, G. Meta: An R package for meta-analysis. R News 2007, 7, 40–45. [Google Scholar]
- Viechtbauer, W. Conducting Meta-Analyses in R with the metafor Package. J. Stat. Softw. 2010, 36, 48. [Google Scholar] [CrossRef]
- Cochran, W.G. The Combination of Estimates from Different Experiments. Biometrics 1954, 10, 101–129. [Google Scholar] [CrossRef]
- Hartung, J.; Knapp, G. A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat. Med. 2001, 20, 3875–3889. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2011. [Google Scholar]
- Augé, R.M.; Toler, H.D.; Saxton, A.M. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: A meta-analysis. Front. Plant Sci. 2014, 5, 562. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.; Dentener, F.; Boyer, E.; Howarth, R.; Seitzinger, S.; Asner, G.; Cleveland, C.; Green, P.; Holland, E.; Karl, D.; et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Dahan, O.; Babad, A.; Lazarovitch, N.; Russak, E.E.; Kurtzman, D. Nitrate leaching from intensive organic farms to groundwater. Hydrol. Earth Syst. Sci. 2014, 18, 333–341. [Google Scholar] [CrossRef]
- Demurtas, C.E.; Seddaiu, G.; Ledda, L.; Cappai, C.; Doro, L.; Carletti, A.; Roggero, P.P. Replacing organic with mineral N fertilization does not reduce nitrate leaching in double crop forage systems under Mediterranean conditions. Agric. Ecosyst. Environ. 2016, 219, 83–92. [Google Scholar] [CrossRef]
- Pandey, A.; Li, F.C.; Askegaard, M.; Rasmussen, I.A.; Olesen, J.E. Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agr. Ecosyst. Environ. 2018, 265, 350–362. [Google Scholar] [CrossRef]
- Doltra, J.; Olesen, J.E. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef]
- Haraldsen, T.K.; Andersen, U.; Krogstad, T.; Sørheim, R. Liquid digestate from anaerobic treatment of source-separated household waste as fertilizer to barley. Waste Manag. Res. 2011, 29, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Karhu, K.; Kalu, S.; Seppänen, A.; Kitzler, B.; Virtanen, E. Potential of biochar soil amendments to reduce N leaching in boreal field conditions estimated using the resin bag method. Agric. Ecosyst. Environ. 2021, 316, 107452. [Google Scholar] [CrossRef]
- Santos, A.; Fangueiro, D.; Moral, R.; Bernal, M.P. Composts Produced From Pig Slurry Solids: Nutrient Efficiency and N-Leaching Risks in Amended Soils. Front. Sustain. Food Syst. 2018, 2, 8. [Google Scholar] [CrossRef]
- Pimentel, D.; Hepperly, P.; Hanson, J.; Douds, D.; Seidel, R. Environmental, Energetic, and Economic Comparisons of Organic and Conventional Farming Systems. BioScience 2005, 55, 573–582. [Google Scholar] [CrossRef]
- Zhang, J.; He, P.; Ding, W.; Ullah, S.; Abbas, T.; Li, M.; Ai, C.; Zhou, W. Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China. Environ. Pollut. 2021, 268, 115004. [Google Scholar] [CrossRef]
- Jiang, Y.; Nyiraneza, J.; Khakbazan, M.; Geng, X.; Murray, B.J. Nitrate leaching and potato yield under varying plow timing and nitrogen rate. Agrosyst. Geosci. Environ. 2019, 2, 1–14. [Google Scholar] [CrossRef]
- Wilson, M.L.; Rosen, C.J.; Moncrief, J.F. Effects of polymer-coated urea on nitrate leaching and nitrogen uptake by potato. J. Environ. Qual. 2010, 39, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Valkama, E.; Rankinen, K.; Virkajärvi, P.; Salo, T.; Kapuinen, P.; Turtola, E. Nitrogen fertilization of grass leys: Yield production and risk of N leaching. Agric. Ecosyst. Environ. 2016, 230, 341–352. [Google Scholar] [CrossRef]
- Puetz, T.; Schilling, J.; Vereecken, H. The influence of the lysimeter filling on the soil monolith inside. In Proceedings of the EGU General Assembly, Vienna, Austria, 19–24 April 2009; p. 10089. [Google Scholar]
- Meissner, R.; Rupp, H.; Haselow, L. Use of lysimeters for monitoring soil water balance parameters and nutrient leaching. In Climate Change and Soil Interactions; Elsevier: Amsterdam, The Netherlands, 2020; pp. 171–205. [Google Scholar]
- Wang, Q.; Cameron, K.; Buchan, G.; Zhao, L.; Zhang, E.H.; Smith, N.; Carrick, S. Comparison of lysimeters and porous ceramic cups for measuring nitrate leaching in different soil types. N. Z. J. Agric. Res. 2012, 55, 333–345. [Google Scholar] [CrossRef]
- Khodabin, G.; Lightburn, K.; Hashemi, S.M.; Moghada, M.S.K.; Jalilian, A. Evaluation of nitrate leaching, fatty acids, physiological traits and yield of rapeseed (Brassica napus) in response to tillage, irrigation and fertilizer management. Plant Soil 2022, 473, 423–440. [Google Scholar] [CrossRef]
- Defra. Diffuse Nitrate Pollution from Agriculture-Strategies for Reducing Nitrate Leaching; Defra: London, UK, 2007. [Google Scholar]
- Zheng, J.; Qu, Y.; Kilasara, M.M.; Mmari, W.N.; Funakawa, S. Nitrate leaching from the critical root zone of maize in two tropical highlands of Tanzania: Effects of fertilizer-nitrogen rate and straw incorporation. Soil Tillage Res. 2019, 194, 104295. [Google Scholar] [CrossRef]
- Alam, S.M.; Naqvi, S.S.M.; Ansari, R. Impact of soil pH on nutrient uptake by crop plants. In Handbook of Plant and Crop Stress; Marcel Dekker, Inc.: New York, NY, USA, 1999; Volume 2, pp. 51–60. [Google Scholar]
- Cao, H.; Chen, R.; Wang, L.; Jiang, L.; Yang, F.; Zheng, S.; Wang, G.; Lin, X. Soil pH, total phosphorus, climate and distance are the major factors influencing microbial activity at a regional spatial scale. Sci. Rep. 2016, 6, 25815. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lv, J.; Coulter, J.A.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Gan, Y. Slow-Release Fertilizer Improves the Growth, Quality, and Nutrient Utilization of Wintering Chinese Chives (Allium tuberosum Rottler ex Spreng.). Agronomy 2020, 10, 381. [Google Scholar] [CrossRef]
- Weil, R.; Brady, N. The Nature and Properties of Soils, 15th ed.; Pearson: London, UK, 2017. [Google Scholar]
Data Span | Treatments | Sub-Groups | Number of Studies, Observations | Output Parameters | Observations for N Leaching | Reference |
---|---|---|---|---|---|---|
38 years (1969–2007) | Fate of N from grain crops | Soil order, soil texture, field plot size, soil organic C, and latitude and longitude of the experimental site | 217 studies | N pools and fluxes | 6 studies | [30] |
23 years (1990–2013) | Urine application rate | - | 12 studies, 82 observations | NO3−-N leaching | - | [27] |
Published before March 2016 | Effect of N management on grain yield and N losses | Fertilisers N management, and N rate | 376 studies, 1166 observations | Grain yield, NUE, NH3 and N2O emission and N leaching and runoff | 4 observations | [31] |
Published before August 2016 | Livestock manure | Manure type, crop type | 141 | Crop productivity, NH3 emission, N leaching and N run off | 61 observations | [32] |
Published before October 2018 | N fertilizer rate | Crop type, fertilizer type, soil pH, total N, measuring method | 86 studies, 324 observations | Soil NO3−-N leaching emission factors | - | [28] |
Published before 10 September 2020 | Effect of fertilizer types and application rate on vegetables | Fertilizer types and application rates | 477 observations | N2O emission and N leaching | 220 observations | [33] |
Published before 11 January 2020 | Effect of crop residues | Climatic conditions, land use type, soil pH, soil texture, synthetic fertilizer application, crop residue type, tillage, and duration of experiment | 90 studies, 345 observations | NO3− leaching and N2O emission | 90 observations | [29] |
Published between 1990 and 2021 | Effect of animal manure on crop productivity and reactive N losses | Reactive N, crop productivity, soil chemical properties, dissolve organic carbon | 334 studies | Crop productivity, NH3 and N2O emission, N leaching | - | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hina, N.S. Global Meta-Analysis of Nitrate Leaching Vulnerability in Synthetic and Organic Fertilizers over the Past Four Decades. Water 2024, 16, 457. https://doi.org/10.3390/w16030457
Hina NS. Global Meta-Analysis of Nitrate Leaching Vulnerability in Synthetic and Organic Fertilizers over the Past Four Decades. Water. 2024; 16(3):457. https://doi.org/10.3390/w16030457
Chicago/Turabian StyleHina, Naila Sumreen. 2024. "Global Meta-Analysis of Nitrate Leaching Vulnerability in Synthetic and Organic Fertilizers over the Past Four Decades" Water 16, no. 3: 457. https://doi.org/10.3390/w16030457
APA StyleHina, N. S. (2024). Global Meta-Analysis of Nitrate Leaching Vulnerability in Synthetic and Organic Fertilizers over the Past Four Decades. Water, 16(3), 457. https://doi.org/10.3390/w16030457