Improvement and Evaluation of CLM5 Application in the Songhua River Basin Based on CaMa-Flood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Hydrological Processes in CLM5
2.4. CaMa-Flood
2.5. Methods
3. Results
3.1. Evaluation of Precipitation in Meteorological Forcing Data
3.2. Evaluation of Discharge
4. Discussion
4.1. Impact of Precipitation Data on Discharge
4.2. Considerations and Potential Implications for Model Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, J.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef]
- Miao, Y.; Wang, A. Evaluation of Routed-Runoff from Land Surface Models and Reanalyses Using Observed Streamflow in Chinese River Basins. J. Meteorol. Res. 2020, 34, 73–87. [Google Scholar] [CrossRef]
- Vergara-Temprado, J.; Ban, N.; Schär, C. Extreme Sub-Hourly Precipitation Intensities Scale Close to the Clausius-Clapeyron Rate Over Europe. Geophys. Res. Lett. 2021, 48, e2020gl089506. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Cui, T.; Li, Y.; Yang, L.; Nan, Y.; Li, K.; Tudaji, M.; Tian, F. Non-monotonic changes in Asian Water Towers’ streamflow at increasing warming levels. Nat. Commun. 2023, 14, 1176. [Google Scholar] [CrossRef] [PubMed]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, eaaz6031. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Feng, L.; Yang, H.; Zhu, X.; Liu, Y.; Liu, J. Weakening flood, intensifying hydrological drought severity and decreasing drought probability in Northeast China. J. Hydrol. Reg. Stud. 2021, 38, 100941. [Google Scholar] [CrossRef]
- Qi, W.; Liu, J.; Yang, H.; Zhu, X.; Tian, Y.; Jiang, X.; Feng, L. Large Uncertainties in Runoff Estimations of GLDAS Versions 2.0 and 2.1 in China. Earth Space Sci. 2020, 7, e2019ea000829. [Google Scholar] [CrossRef]
- Qi, W.; Zhang, C.; Fu, G.; Zhou, H. Global Land Data Assimilation System data assessment using a distributed biosphere hydrological model. J. Hydrol. 2015, 528, 652–667. [Google Scholar] [CrossRef]
- Zaitchik, B.F.; Rodell, M.; Olivera, F. Evaluation of the Global Land Data Assimilation System using global river discharge data and a source-to-sink routing scheme. Water Resour. Res. 2010, 46, W06507. [Google Scholar] [CrossRef]
- Massoud, E.C.; Bloom, A.A.; Longo, M.; Reager, J.T.; Levine, P.A.; Worden, J.R. Information content of soil hydrology in a west Amazon watershed as informed by GRACE. Hydrol. Earth Syst. Sci. 2022, 26, 1407–1423. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, S.; Yin, J.; Gu, L.; Xiong, F. Using the Global Hydrodynamic Model and GRACE Follow-On Data to Access the 2020 Catastrophic Flood in Yangtze River Basin. Remote Sens. 2021, 13, 3023. [Google Scholar] [CrossRef]
- Zhang, X.-J.; Tang, Q.; Pan, M.; Tang, Y. A Long-Term Land Surface Hydrologic Fluxes and States Dataset for China. J. Hydrometeorol. 2014, 15, 2067–2084. [Google Scholar] [CrossRef]
- Sellers, P.J.; Dickinson, R.E.; Randall, D.A.; Betts, A.K.; Hall, F.G.; Berry, J.A.; Henderson-Sellers, A. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef]
- Mitchell, K.E. The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. 2004, 109, D07S90. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Lamarque, J.F.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Strand, W.G. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, e2019ms001916. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Oleson, K.W.; Flanner, M.G.; Thornton, P.E.; Swenson, S.C.; Lawrence, P.J.; Slater, A.G. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 2011, 3, e2011ms000045. [Google Scholar] [CrossRef]
- Oleson, K.; Lawrence, D.M.; Bonan, G.B.; Drewniak, B.; Huang, M.; Koven, C.D.; Levis, S.; Li, F.; Riley, W.J.; Subin, Z.M.; et al. Technical Description of Version 4.5 of the Community Land Model (CLM) (No. NCAR/TN-503+STR); National Center for Atmospheric Research: Boulder, CO, USA, 2013. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Harrigan, S.; Molnar, P.; Slater, L.J.; Kirchner, J.W. The Relative Importance of Different Flood-Generating Mechanisms Across Europe. Water Resour. Res. 2019, 55, 4582–4593. [Google Scholar] [CrossRef]
- Yamazaki, D.; Kanae, S.; Kim, H.; Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 2011, 47, W04501. [Google Scholar] [CrossRef]
- Faiz, M.A.; Liu, D.; Fu, Q.; Uzair, M.; Khan, M.I.; Baig, F.; Cui, S. Stream flow variability and drought severity in the Songhua River Basin, Northeast China. Stoch. Environ. Res. Risk Assess. 2017, 32, 1225–1242. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Ran, L.; Su, T. Climatic and anthropogenic impacts on runoff changes in the Songhua River basin over the last 56years (1955–2010), Northeastern China. Catena 2015, 127, 258–269. [Google Scholar] [CrossRef]
- Yu, C.; Shao, H.; Hu, D.; Liu, G.; Dai, X. Merging precipitation scheme design for improving the accuracy of regional precipitation products by machine learning and geographical deviation correction. J. Hydrol. 2023, 620, 129560. [Google Scholar] [CrossRef]
- Chen, J.; Liao, J. Monitoring lake level changes in China using multi-altimeter data (2016–2019). J. Hydrol. 2020, 590, 125544. [Google Scholar] [CrossRef]
- Chen, J.; Fenoglio, L.; Kusche, J.; Liao, J.; Uyanik, H.; Nadzir, Z.A.; Lou, Y. Evaluation of Sentinel-3A altimetry over Songhua river Basin. J. Hydrol. 2023, 618, 129197. [Google Scholar] [CrossRef]
- Wu, Y.; Ju, H.; Qi, P.; Li, Z.; Zhang, G.; Sun, Y. Increasing flood risk under climate change and social development in the Second Songhua River basin in Northeast China. J. Hydrol. Reg. Stud. 2023, 48, 101459. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.M.; Liu, S.F.; Dai, Y.J.; Wei, N. Evaluation of Common Land Model Based on International Land Model Benchmarking System. Clim. Environ. Res. 2020, 25, 649–666. [Google Scholar] [CrossRef]
- Kim, H.J. Global Soil Wetness Project Phase 3 Atmospheric Boundary Counditions (Experiment 1); Data Integration and Analysis System (DIAS): Tokyo, Japan, 2017. [Google Scholar] [CrossRef]
- Viovy, N. CRUNCEP Version 7—Atmospheric Forcing Data for the Community Land Model; Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Lab: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C.; Tian, H.; Canadell, J.G. Largely underestimated carbon emission from land use and land cover change in the conterminous United States. Glob. Chang. Biol. 2019, 25, 3741–3752. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2010, 21, 1303–1330. [Google Scholar] [CrossRef]
- Lawrence, P.J.; Chase, T.N. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). J. Geophys. Res. 2007, 112, G01023. [Google Scholar] [CrossRef]
- Klein Goldewijk, K.; Beusen, A.; Doelman, J.; Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 2017, 9, 927–953. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Hurtt, G.C.; Arneth, A.; Brovkin, V.; Calvin, K.V.; Jones, A.D.; Shevliakova, E. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev. 2016, 9, 2973–2998. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef]
- Wigmosta, M.S.; Li, H.; Wu, H.; Huang, M.; Ke, Y.; Coleman, A.M.; Leung, L.R. A Physically Based Runoff Routing Model for Land Surface and Earth System Models. J. Hydrometeorol. 2013, 14, 808–828. [Google Scholar] [CrossRef]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Zeng, X. The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. J. Adv. Model. Earth Syst. 2019, 11, 4245–4287. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L.; Dickinson, R.E.; Gulden, L.E. A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res. 2005, 110, D21106. [Google Scholar] [CrossRef]
- Tesfa, T.K.; Li, H.Y.; Leung, L.R.; Huang, M.; Ke, Y.; Sun, Y.; Liu, Y. A subbasin-based framework to represent land surface processes in an Earth system model. Geosci. Model Dev. 2014, 7, 947–963. [Google Scholar] [CrossRef]
- Verdin, K.L.; Jenson, S.K. Development of Continental Scale Digital Elevation Models and Extraction of Hydrographic Features. In Proceedings of the Third International Conference/Workshop on Integrating GIS and Environmental Modeling, Sante Fe, NM, USA, 21–25 January 1996; pp. 397–403. [Google Scholar]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Yamazaki, D.; Lee, H.; Alsdorf, D.E.; Dutra, E.; Kim, H.; Kanae, S.; Oki, T. Analysis of the water level dynamics simulated by a global river model: A case study in the Amazon River. Water Resour. Res. 2012, 48, W09508. [Google Scholar] [CrossRef]
- Yamazaki, D.; Oki, T.; Kanae, S. Deriving a global river network map and its sub-grid topographic characteristics from a fine-resolution flow direction map. Hydrol. Earth Syst. Sci. 2009, 13, 2241–2251. [Google Scholar] [CrossRef]
- Rojas, M.; Lambert, F.; Ramirez-Villegas, J.; Challinor, A.J. Emergence of robust precipitation changes across crop production areas in the 21st century. Proc. Natl. Acad. Sci. USA 2019, 116, 6673–6678. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhou, F.; Piao, S.; Huang, M.; Chen, A.; Ciais, P.; Zeng, Z. Regional patterns of future runoff changes from Earth system models constrained by observation. Geophys. Res. Lett. 2017, 44, 5540–5549. [Google Scholar] [CrossRef]
- He, Z.; Hu, H.; Tian, F.; Ni, G.; Hu, Q. Correcting the TRMM rainfall product for hydrological modelling in sparsely-gauged mountainous basins. Hydrol. Sci. J. 2016, 62, 306–318. [Google Scholar] [CrossRef]
- Cao, Y.; Fu, C.; Wang, X.; Dong, L.; Yao, S.; Xue, B.; Wu, H. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia. Sci. Total Environ. 2021, 770, 145353. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Chen, J.; Zhao, L.; Zhao, J.; Qiao, Y.; Shi, J. Comprehensive evaluation of mainstream gridded precipitation datasets in the cold season across the Tibetan Plateau. J. Hydrol. Reg. Stud. 2022, 43, 101186. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Yang, M. Effects of Elevation and Longitude on Precipitation and Drought on the Yunnan–Guizhou Plateau, China. Pure Appl. Geophys. 2023, 180, 2461–2481. [Google Scholar] [CrossRef]
- Bodjrènou, R.; Sintondji, L.O.; Comandan, F. Hydrological modeling with physics-based models in the oueme basin: Issues and perspectives for simulation optimization. J. Hydrol. Reg. Stud. 2023, 48, 101448. [Google Scholar] [CrossRef]
- Sheng, M.; Lei, H.; Jiao, Y.; Yang, D. Evaluation of the Runoff and River Routing Schemes in the Community Land Model of the Yellow River Basin. J. Adv. Model. Earth Syst. 2017, 9, 2993–3018. [Google Scholar] [CrossRef]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, L.; Wang, Z.; Li, H. SwinVRNN: A Data-Driven Ensemble Forecasting Model via Learned Distribution Perturbation. J. Adv. Model. Earth Syst. 2023, 15, e2022ms003211. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, F.; Zhang, H.; Scott, C.A.; Zeng, C.; Shi, X. Intensive precipitation observation greatly improves hydrological modelling of the poorly gauged high mountain Mabengnong catchment in the Tibetan Plateau. J. Hydrol. 2018, 556, 500–509. [Google Scholar] [CrossRef]
Datasets | Resolution | Period | Reanalysis | Observations | |
---|---|---|---|---|---|
Temporal | Spatial | ||||
CMFD | 6-hourly | 0.1° × 0.1° | 1979–2018 | Princeton, CMA | TRMM, GEWEX-SRB, GLDAS |
GSWP3 v1 | 6-hourly | 0.5° × 0.5° | 1901–2014 | 20CR | CRU TS v3.21, GPCCv7, SRB |
CRU v7 | 6-hourly | 0.5° × 0.5° | 1901–2016 | NCEP | CRU TS3.2 |
Index and Expression | Range and Ideal Value | Description |
---|---|---|
[−1, 1], 1 | Qti and Qpi denote the observed and unobserved values at time point i, respectively; Qt and Qp represent the mean of the observed and unobserved values; n denotes the total amount of data; STD denotes the standard deviation; and Ǭ denotes the mean value | |
(−∞, 1], 1 | ||
(−∞, +∞), 0 | ||
[0, +∞), 0 | ||
— |
Datasets | Day | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec | Year |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OBS | 1.46 | 5.71 | 4.99 | 15.25 | 22.93 | 55.18 | 83.05 | 125.14 | 118.66 | 47.61 | 29.08 | 16.74 | 9.59 | 533.92 |
CMFD | 1.50 | 6.31 | 4.90 | 15.40 | 23.22 | 60.26 | 88.27 | 127.73 | 119.28 | 47.35 | 28.24 | 17.08 | 9.29 | 547.33 |
CRUv7 | 1.37 | 3.89 | 4.00 | 13.15 | 26.81 | 52.21 | 82.95 | 131.90 | 107.28 | 38.36 | 22.28 | 10.88 | 5.96 | 499.67 |
GSWP3v1 | 1.50 | 6.19 | 5.60 | 17.82 | 28.47 | 53.04 | 92.15 | 130.04 | 120.03 | 42.18 | 27.74 | 17.31 | 8.59 | 549.15 |
PI (mm/d) | CMFD | CRUv7 | GSWP3v1 | |||
---|---|---|---|---|---|---|
CC | RMSE | CC | RMSE | CC | RMSE | |
[0, 1) | 0.34 | 0.22 | 0.09 | 0.23 | 0.03 | 0.23 |
[1, 5) | 0.37 | 1.00 | 0.13 | 1.13 | 0.02 | 1.13 |
[5, 10) | 0.23 | 1.37 | 0.02 | 1.35 | 0.12 | 1.42 |
[10, 20) | 0.27 | 2.71 | 0.04 | 2.37 | 0.11 | 3.01 |
[20, 30) | 0.06 | 2.35 | −0.12 | 2.75 | 0.17 | 2.81 |
[30, +∞) | 0.48 | 5.90 | −0.59 | 6.19 | −0.08 | 12.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, Z.; Zhang, Z. Improvement and Evaluation of CLM5 Application in the Songhua River Basin Based on CaMa-Flood. Water 2024, 16, 442. https://doi.org/10.3390/w16030442
Li H, Zhang Z, Zhang Z. Improvement and Evaluation of CLM5 Application in the Songhua River Basin Based on CaMa-Flood. Water. 2024; 16(3):442. https://doi.org/10.3390/w16030442
Chicago/Turabian StyleLi, Heng, Zhiwei Zhang, and Zhen Zhang. 2024. "Improvement and Evaluation of CLM5 Application in the Songhua River Basin Based on CaMa-Flood" Water 16, no. 3: 442. https://doi.org/10.3390/w16030442
APA StyleLi, H., Zhang, Z., & Zhang, Z. (2024). Improvement and Evaluation of CLM5 Application in the Songhua River Basin Based on CaMa-Flood. Water, 16(3), 442. https://doi.org/10.3390/w16030442