Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Micrometeorology Sensors and Measurements
2.3. Energy Fluxes: Observation/Estimation
2.4. Field Observation and Measurements
2.5. Spatial Evapotranspiration Modeling Interface (SETMI) Model
2.6. Validation of the SETMI Model with a Large Aperture Scintillometer (LAS)
2.6.1. Model Input Parameters
- (a)
- Remote sensing imagery
- (b)
- Ground input parameters
- (c)
- Weather input parameters
2.6.2. Evaluation of Model-Estimated Parameters
2.7. Estimation of Regional and Seasonal ET of the Wheat Crop for the Winter Season (Rabi) 2018–2019
2.7.1. Estimation of ETrF between Days of Satellite Image Acquisitions
2.7.2. Estimation of Monthly and Seasonal Evapotranspiration
2.8. Estimation of Regional Wheat Yield for the Winter Season (Rabi) 2018–2019
Estimation of Net Primary Productivity (NPP) of Wheat Crop
- (a)
- NPP model (Production Efficiency Modeling Approach)
- (b)
- Down-regulation of maximum LUE
- (c)
- Satellite data pre-processing
- (d)
- Estimation of Tscalar (Ts) using MODIS LST (Land surface temperature) Images
- (e)
- Estimation of Water Scalar (Ws)
- (f)
- Estimation of APAR (Absorbed Photosynthetically Active Radiation)
- (g)
- Evaluation of the Estimated Regional Yield
2.9. Estimation of Crop Water Productivity (WP) for Winter/Rabi Season 2018–2019
3. Results
3.1. Performance of the SETMI Model in the Field Experiment
- (a)
- Maize
- (b)
- Wheat
3.2. Estimation of Regional Wheat Water Productivity
3.2.1. Regional Actual Evapotranspiration Using the SETMI Model
3.2.2. Regional Wheat Yield Estimation for Winter/Rabi Season (2018–2019)
3.2.3. Regional Wheat Water Productivity for the Winter/Rabi Season (2018–2019)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirda, C.; Kanber, R. Water, no longer a plentiful resource, should be used sparingly in irrigated agriculture. In Crop Yield Response to Deficit Irrigation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; pp. 1–20. [Google Scholar]
- Morante-Carballo, F.; Montalván-Burbano, N.; Quiñonez-Barzola, X.; Jaya-Montalvo, M.; Carrión-Mero, P. What do we know about water scarcity in semi-arid zones? A global analysis and research trends. Water 2022, 14, 2685. [Google Scholar] [CrossRef]
- Karimi, P.; Bastiaanssen, W.G. Spatial evapotranspiration, rainfall and land use data in water accounting–Part 1: Review of the accuracy of the remote sensing data. Hydrol. Earth Syst. Sci. 2015, 19, 507–532. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D.; Surový, P. Estimation and extrapolation of tree parameters using spectral correlation between UAV and Pléiades data. Forests 2018, 9, 85. [Google Scholar] [CrossRef]
- Gu, L.; Meyers, T.; Pallardy, S.G.; Hanson, P.J.; Yang, B.; Heuer, M.; Hosman, K.P.; Riggs, J.S.; Sluss, D.; Wullschleger, S.D. Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. J. Geophys. Res. Atmos. 2006, 111, D16102. [Google Scholar] [CrossRef]
- Gdoutos, E.E. Fundamentals of Optics. In Experimental Mechanics: An Introduction; Springer International Publishing: Cham, Switzerland, 2021; pp. 19–69. [Google Scholar]
- Lagouarde, J.P.; Jacob, F.; Gu, X.F.; Olioso, A.; Bonnefond, J.M.; Kerr, Y.; Mcaneney, K.J.; Irvine, M. Spatialization of sensible heat flux over a heterogeneous landscape. Agronomie 2002, 22, 627–633. [Google Scholar] [CrossRef]
- Xue, J.; Bali, K.M.; Light, S.; Hessels, T.; Kisekka, I. Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize. Agric. Water Manag. 2020, 238, 106228. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2008, 26, 223–237. [Google Scholar] [CrossRef]
- Glenn, E.P.; Nagler, P.L.; Huete, A.R. Vegetation index methods for estimating evapotranspiration by remote sensing. Surv. Geophys. 2010, 31, 531–555. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates; Wageningen University and Research: Wageningen, The Netherlands, 1995. [Google Scholar]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.A.; Holtslag, A.A. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Singh, R.K.; Senay, G.B.; Velpuri, N.M.; Bohms, S.; Scott, R.L.; Verdin, J.P. Actual evapotranspiration (water use) assessment of the Colorado River Basin at the Landsat resolution using the operational simplified surface energy balance model. Remote Sens. 2013, 6, 233–256. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A two-source trapezoid model for evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 7, 263–293. [Google Scholar] [CrossRef]
- Brauman, K.A.; Siebert, S.; Foley, J.A. Improvements in crop water productivity increase water sustainability and food security—A global analysis. Environ. Res. Lett. 2013, 8, 024030. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M. Beyond Crop Per Drop: Assessing Agricultural Water Productivity and Efficiency in a Maturing Water Economy. Water Econ. Policy 2020, 6, 1980005. [Google Scholar] [CrossRef]
- Sharma, B.R.; Gulati, A.; Mohan, G.; Manchanda, S.; Ray, I.; Amarasinghe, U. Water Productivity Mapping of Major Indian Crops. 2018. Available online: https://www.nabard.org/auth/writereaddata/tender/1806181128Water%20Productivity%20Mapping%20of%20Major%20Indian%20Crops,%20Web%20Version%20(Low%20Resolution%20PDF).pdf (accessed on 25 April 2019).
- Sadras, V.O.; Angus, J.F. Benchmarking water-use efficiency of rainfed wheat in dry environments. Aust. J. Agric. Res. 2006, 57, 847–856. [Google Scholar] [CrossRef]
- Pal, O.; Hemraj, S.S. Flash-Flood Potential Mapping in Agricultural Land Using Rule-Based Classification Approach on Multi-Temporal Synthetic-Aperture Radar (SAR) Data over Jhajjar and Rohtak Districts of Haryana State. South Asian J. Eng. Technol. 2022, 4, 160–165. [Google Scholar] [CrossRef]
- Yadav, V. Vulnerability of A District: A Case of Rohtak, Haryana. Space 2013, 17, 93–101. [Google Scholar]
- Chaudhary, B.S.; Saroha, G.P.; Yadav, M. Human induced land use/land cover changes in northern part of Gurgaon district, Haryana, India: Natural resources census concept. J. Hum. Ecol. 2008, 23, 243–252. [Google Scholar] [CrossRef]
- Maguire, M.S.; Neale, C.M.; Woldt, W.E.; Heeren, D.M. Managing spatial irrigation using remote-sensing-based evapotranspiration and soil water adaptive control model. Agric. Water Manag. 2022, 272, 107838. [Google Scholar] [CrossRef]
- Geli, H.M.; Neale, C.M. Spatial evapotranspiration modelling interface (SETMI). In Remote Sensing and Hydrology Symposium; IAHS-AISH Publication: Oxfordshire, UK, 2012; pp. 171–174. [Google Scholar]
- Barker, J.B.; Heeren, D.M.; Neale, C.M.; Rudnick, D.R. Evaluation of variable rate irrigation using a remote-sensing-based model. Agric. Water Manag. 2018, 203, 63–74. [Google Scholar] [CrossRef]
- Chávez, J.L.; Neale, C.; Prueger, J.H.; Kustas, W.P. Daily evapotranspiration estimates from extrapolating instantaneous airborne remote sensing ET values. Irrig. Sci. 2008, 27, 67–81. [Google Scholar] [CrossRef]
- Ham, J.M. Useful equations, and tables in micrometeorol. Micrometeorology Agric. Syst. 2005, 47, 533–560. [Google Scholar]
- Atmospheric Correction Parameter Calculator. Available online: http://atmcorr.gsfc.nasa.gov/ (accessed on 25 April 2019).
- Brunsell, N.A.; Gillies, R.R. Incorporating surface emissivity into a thermal atmospheric correction. Photogramm. Eng. Remote Sens. 2002, 68, 1263–1270. [Google Scholar]
- Allen, R. Quality Assessment of Weather Data and Micrometeological Flux. Impacts on Evapotranspiration Calculation. J. Agric. Meteorol. 2008, 64, 191–204. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Power Data Access Viewer. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 21 December 2021).
- Kiniry, J.R.; Jones, C.A.; O’toole, J.C.; Blanchet, R.; Cabelguenne, M.; Spanel, D.A. Radiation-use efficiency in biomass accumulation prior to grain-filling for five grain-crop species. Field Crops Res. 1989, 20, 51–64. [Google Scholar] [CrossRef]
- Goh, E.H.; Ng, J.L.; Huang, Y.F.; Yong, S.L. Performance of potential evapotranspiration models in Peninsular Malaysia. J. Water Clim. Chang. 2021, 12, 3170–3186. [Google Scholar] [CrossRef]
- Singh, R.K.; Liu, S.; Tieszen, L.; Suyker, A.E.; Verma, S.B. Estimating seasonal evapotranspiration from temporal satellite images. Irrig. Sci. 2012, 30, 303–313. [Google Scholar] [CrossRef]
- Neale, C.M.; Geli, H.M.; Kustas, W.P.; Alfieri, J.G.; Gowda, P.H.; Evett, S.R.; Prueger, J.H.; Hipps, L.E.; Dulaney, W.P.; Chávez, J.L.; et al. Soil water content estimation using a remote sensing-based hybrid evapotranspiration modeling approach. Adv. Water Resour. 2012, 50, 152–161. [Google Scholar] [CrossRef]
- Geli, H.M.; Gonzalez-Piqueras, J.; Torres, E.; Campos, I.; Neale, C.M.; Calera, A. The application of a Hybrid Evapotranspiration approach in rainfed wheat. In Proceedings of the European Geosciences Union General Assembly 2013, Vienna, Austria, 7–12 April 2013; p. EGU2013-6930. [Google Scholar]
- Bispo, R.C.; Hernandez, F.B.; Gonçalves, I.Z.; Neale, C.M.; Teixeira, A.H. Remote sensing-based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach. Agric. Water Manag. 2022, 271, 107763. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef]
- Silva, B.B.; Mercante, E.; Boas, M.A.; Wrublack, S.C.; Oldoni, L.V. Satellite-based ET estimation using Landsat 8 images and SEBAL model. Rev. Ciência Agron. 2018, 49, 221–227. [Google Scholar] [CrossRef]
- Beg, A.A.; Al-Sulttani, A.H.; Ochtyra, A.; Jarocińska, A.; Marcinkowska, A. Estimation of evapotranspiration using SEBAL algorithm and Landsat-8 data—A case study: Tatra mountains region. J. Geol. Resour. Eng. 2016, 6, 257–270. [Google Scholar]
- Doorenbos, J.; Kassam, A.H. Yield response to water. Irrig. Drain. Pap. 1979, 33, 257. [Google Scholar]
- Bastiaanssen, W.G.; Ali, S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agric. Ecosyst. Environ. 2003, 94, 321–340. [Google Scholar] [CrossRef]
- Ram, K. Levels of agricultural productivity in Haryana state 2012–2015. Int. J. Interdiscip. Res. Arts Humanit. 2017, 2, 228–232. [Google Scholar]
- Lobell, D.B.; Hicke, J.A.; Asner, G.P.; Field, C.B.; Tucker, C.J.; Los, S.O. Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Glob. Chang. Biol. 2002, 8, 722–735. [Google Scholar] [CrossRef]
- VanDam, J.C.; Singh, R.; Bessembinder, J.J.; Leffelaar, P.A.; Bastiaanssen, W.G.; Jhorar, R.K.; Kroes, J.G.; Droogers, P. Assessing options to increase water productivity in irrigated river basins using remote sensing and modelling tools. Water Resour. Dev. 2006, 22, 115–133. [Google Scholar] [CrossRef]
- Zwart, S.J.; Leclert, L.M. A remote sensing-based irrigation performance assessment: A case study of the Office du Niger in Mali. Irrig. Sci. 2010, 28, 371–385. [Google Scholar] [CrossRef]
- Meena, R.P.; Sharma, R.K.; Chhokar, R.S.; Chander, S.; Tripathi, S.C.; Kumar, R.; Sharma, I. Improving water use efficiency of rice-wheat cropping system by adopting micro-irrigation systems. Int. J. Bio-Resour. Stress Manag. 2015, 6, 341–345. [Google Scholar] [CrossRef]
- Pradhan, S.; Sehgal, V.K.; Sahoo, R.N.; Bandyopadhyay, K.K.; Singh, R. Yield, water, radiation, and nitrogen use efficiencies of wheat (Triticum aestivum) as influenced by nitrogen levels in a semi-arid environment. Indian J. Agron. 2014, 59, 69–77. [Google Scholar] [CrossRef]
- Hussain, I.; Sakthivadivel, R.; Amarasinghe, U. Land, and water productivity of wheat in the Western Indo-Gangetic plains of India and Pakistan: A comparative analysis. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; CABI Publishing: Wallingford, UK, 2003; pp. 255–271. [Google Scholar]
- Singh, R.; Van Dam, J.C.; Feddes, R.A. Water productivity analysis of irrigated crops in Sirsa district, India. Agric. Water Manag. 2006, 82, 253–278. [Google Scholar] [CrossRef]
S. No. | Observation/Measurement | Parameter Measured | Sensor Used | Model Type |
---|---|---|---|---|
1. | Surface energy flux | Sensible heat flux (H) | Large-aperture scintillometer | Kipp & Zonen: MKII, Delft, Netherland |
2. | Radiation | Net radiation (Rn) Incoming global radiation | Net radiometer Pyranometer | Kipp & Zonen: NR-LITE/CNR4, Delft, Netherland Kipp & Zonen:CMP3, Delft, Netherland |
3. | Two levels of meteorological parameters (2 m and 4 m above ground) | Wind speed and direction Relative Humidity Air temperature | Anemometer and wind vane Humidity probe Temperature probe | R M Young: 05103-L Campbell Scientific: CS 215, UT, Logan, UT, USA Campbell Scientific: CS 215, Logan, UT, USA |
4. | Biophysical measurements | Leaf Area Index | Plant canopy analyzer | LI-COR: LAI 2000, Lincoln, NE |
5. | Soil measurements | Soil moisture Ground Heat Flux (10 cm depth) | Time domain reflectometer Soil Heat Flux Plate | Spectrum Tech: Fieldscout 300, Aurora, IL, USA Hukseflux: HFP015C, Delft, Netherland |
6. | Data recording | Data logging and storage | Datalogger | Campbell Scientific: CR-1000, Logan, UT, USA |
S. No. | Parameters | Values |
---|---|---|
1. | αleaf VIS (leaf absorptivity in the visible range) | 0.49–0.85 |
2. | αleaf NI (leaf absorptivity in the NIR range) | 0.15–0.30 |
3. | αleaf TI (leaf absorptivity in the TIR range) | 0.60–0.95 |
4. | αleaf Dead VIS (absorptivity of dead leaves in the visible range) | 0.30–0.49 |
5. | αleaf Dead NIR (absorptivity of dead leaves in the near-infrared range) | 0.10–0.13 |
6. | αleaf Dead TIR (absorptivity of dead leaves in the thermal infrared range) | 0.80–0.95 |
7. | Fg (fraction of green leaves) | 0.15–0.60 |
8. | Hc min (minimum canopy height) (m) | 0.1 |
9. | Hc max (maximum canopy height) (m) | 1.2–2.5 |
10. | S (leaf size width) (m) | 0.05–0.20 |
11. | Wc (canopy width) (m) | 0.22–0.90 |
12. | LAI (leaf area index) | 0.1–4.5 |
13. | Refl soil VIS (soil reflectivity in the visible range) | 0.25 |
14. | Refl soil NIR (soil reflectivity in the NIR range) | 0.15–0.25 |
15. | ε soil TIR (soil emissivity in the TIR range) | 0.95–0.99 |
16. | Ag (ratio of soil heat flux to canopy net radiation) | 0.3–0.4 |
17. | D (ratio of crop height and canopy width) | 1–3 |
Surface Type | Absorptivity | Emissivity | |
---|---|---|---|
Visible | Near Infrared | ||
Green vegetation | 0.85 | 0.20 | 0.98 |
Senesced vegetation | 0.49 | 0.13 | 0.95 |
Soil | 0.15 | 0.25 | 0.93 |
S. No. | 2015–2016 (Rainy/kharif) | 2015–2016 (Winter/rabi) | 2017–2018 (Rainy/kharif) | 2016–2017 (Winter/rabi) |
---|---|---|---|---|
1. | 30 August 2015 | 11 November 2015 | 25 June 2017 | 15 December 2016 |
2. | 8 September 2015 | 4 December 2015 | 4 September 2017 | 22 December 2016 |
3. | 24 September 2015 | 30 January 2016 | 13 September 2017 | 24 February 2017 |
4. | 1 October 2015 | 2 March 2016 | 20 September 2017 | 5 March 2017 |
5. | 10 October 2015 | 9 March 2016 | 29 September 2017 | 12 March 2017 |
6. | 17 October 2015 | 6 October 2017 | 21 March 2017 | |
7. | 26 October 2015 | 15 October 2017 | 28 March 2017 | |
8. | 22 October 2017 | 6 April 2017 |
S. No. | Satellite | Sensor | Time Resolution | Image Size | Product | Spatial Resolution |
---|---|---|---|---|---|---|
1. | Landstat-8 | OLI (operational land imager) TIRS (thermal infrared sensor) | 16 days | 185 km × 180 km | L1TP | 30 m and 100 m |
2. | Sentinel-2A | MSI (multispectral instrument) | 15 days | 290 km × 290 km | L1C | 20 m (resampled at 30 m) |
S. No. | Rohtak and Jhajjar | Gurugram |
---|---|---|
1. | 26 November 2018 | 26 November 2018 |
2. | 29 January 2019 | 5 December 2018 |
3. | 18 March 2019 | 21 December 2018 |
4. | 3 April 2019 | 29 January 2019 |
5. | 19 April 2019 | 23 February 2019 |
6. | 11 March 2019 | |
7. | 18 March 2019 | |
8. | 3 April 2019 |
S. No. | Rohtak and Jhajjar | Gurugram |
---|---|---|
1. | 23 November 2018 | 16 November 2018 |
2. | 9 December 2018 | 23 November 2018 |
3. | 25 December 2018 | 2 December 2018 |
4. | 10 January 2019 | 9 December 2018 |
5. | 27 February 2019 | 18 December 2018 |
6. | 31 March 2019 | 25 December 2018 |
7. | 10 January 2019 | |
8. | 19 January 2019 | |
9. | 4 February 2019 | |
10. | 20 February 2019 | |
11. | 27 February 2019 | |
12. | 8 March 2019 | |
13. | 24 March 2019 | |
14. | 31 March 2019 | |
15. | 25 April 2019 |
S. No. | Rohtak and Jhajjar | Gurugram |
---|---|---|
1. | 26 November 2018 | 26 November 2018 |
2. | 29 January 2019 | 5 December 2018 |
3. | 18 March 2019 | 21 December 2018 |
4. | 3 April 2019 | 29 January 2019 |
5. | 19 April 2019 | 23 February 2019 |
6. | 11 March 2019 | |
7. | 18 March 2019 | |
8. | 3 April 2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Sehgal, V.K.; Dhakar, R.; Neale, C.M.U.; Goncalves, I.Z.; Rani, A.; Jha, P.K.; Das, D.K.; Mukherjee, J.; Khanna, M.; et al. Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model. Water 2024, 16, 422. https://doi.org/10.3390/w16030422
Singh P, Sehgal VK, Dhakar R, Neale CMU, Goncalves IZ, Rani A, Jha PK, Das DK, Mukherjee J, Khanna M, et al. Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model. Water. 2024; 16(3):422. https://doi.org/10.3390/w16030422
Chicago/Turabian StyleSingh, Pragya, Vinay Kumar Sehgal, Rajkumar Dhakar, Christopher M. U. Neale, Ivo Zution Goncalves, Alka Rani, Prakash Kumar Jha, Deb Kumar Das, Joydeep Mukherjee, Manoj Khanna, and et al. 2024. "Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model" Water 16, no. 3: 422. https://doi.org/10.3390/w16030422
APA StyleSingh, P., Sehgal, V. K., Dhakar, R., Neale, C. M. U., Goncalves, I. Z., Rani, A., Jha, P. K., Das, D. K., Mukherjee, J., Khanna, M., & Dubey, S. K. (2024). Estimation of ET and Crop Water Productivity in a Semi-Arid Region Using a Large Aperture Scintillometer and Remote Sensing-Based SETMI Model. Water, 16(3), 422. https://doi.org/10.3390/w16030422