The Water Footprint of Pastoral Dairy Farming: The Effect of Water Footprint Methods, Data Sources and Spatial Scale †
Abstract
:1. Introduction
2. Methods and Material
2.1. Location and Farming Details of the Studied Farms
2.2. Water Footprint Methods
2.2.1. Quantification of Consumptive Green and Blue Water Footprints
2.2.2. Blue Water Footprint Impact Index (WFIIblue)
2.2.3. The AWARE Method Water Scarcity Footprint (WFAWARE)
2.2.4. Data Sources and Spatial Scale
Global Data Sources
Local Data Sources
3. Results
3.1. Consumptive Water Footprint and Its Variation on the Studied Pastoral Dairy Farms
3.2. Effect of Water Footprint Methods
3.3. Effect of Local and Global Data Sources
3.4. Effect of Spatial Scale
4. Discussion
4.1. Evaluation of Water Footprint Methods
4.2. Appropriate Data Sources and Spatial Scales
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ridoutt, B.G.; Williams, S.R.O.; Baud, S.; Fraval, S.; Marks, N. The water footprint of dairy products: Case study involving skim milk powder. J. Dairy Sci. 2010, 93, 5114–5117. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, C.; Adduci, F.; Musto, M.; Paolino, R.; Freschi, P.; Pecora, G.; D’Adamo, C.; Valentini, V. Low vs. high “water footprint assessment” diet in milk production: A comparison between triticale and corn silage based diets. Emir. J. Food Agric. 2015, 27, 312–317. [Google Scholar] [CrossRef]
- Palhares, J.C.P.; Pezzopane, J.R.M. Water footprint accounting and scarcity indicators of conventional and organic dairy production systems. J. Clean. Prod. 2015, 93, 299–307. [Google Scholar] [CrossRef]
- Dalla Riva, A.; Burek, J.; Kim, D.; Thomas, G.; Cassandro, M.; De Marchi, M. Environmental life cycle assessment of Italian mozzarella cheese: Hotspots and improvement opportunities. J. Dairy Sci. 2017, 100, 7933–7952. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.J.M.; Hoving, I.E.; Vellinga, T.V.; Van de Ven, G.W.J.; Leffelaar, P.A.; Gerber, P.J. Assessing environmental impacts associated with freshwater consumption along the life cycle of animal products: The case of Dutch milk production in Noord-Brabant. Int. J. Life Cycle Assess. 2013, 18, 193–203. [Google Scholar] [CrossRef]
- Scheepers, M.E.; Jordaan, H. Assessing the Blue and Green Water Footprint of Lucerne for Milk Production in South Africa. Sustainability 2016, 8, 49. [Google Scholar] [CrossRef]
- Zonderland-Thomassen, M.A.; Ledgard, S.F. Water footprinting—A comparison of methods using New Zealand dairy farming as a case study. Agric. Syst. 2012, 110, 30–40. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Chapagain, A.; Aldaya, M.; Mekonnen, M. The Water Footprint Assessment Manual: Setting the Global Standard; Earthscan Publishing: London, UK, 2011; ISBN 978-1-84971-279-8. [Google Scholar]
- Pfister, S.; Koehler, A.; Hellweg, S. Assessing the Environmental Impacts of Freshwater Consumption in LCA. Environ. Sci. Technol. 2009, 43, 4098–4104. [Google Scholar] [CrossRef]
- Canals, L.M.I.; Chenoweth, J.; Chapagain, A.; Orr, S.; Anton, A.; Clift, R. Assessing freshwater use impacts in LCA: Part I-inventory modelling and characterisation factors for the main impact pathways. Int. J. Life Cycle Assess. 2009, 14, 28–42. [Google Scholar] [CrossRef]
- Berger, M.; van der Ent, R.; Eisner, S.; Bach, V.; Finkbeiner, M. Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environ. Sci. Technol. 2014, 48, 4521–4528. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; De Camillis, C.; Doll, P.; Gassert, F.; Gerten, D.; Humbert, S.; Inaba, A.; Itsubo, N.; Lemoine, Y.; et al. Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: Outcome of the expert workshops. Int. J. Life Cycle Assess. 2015, 20, 577–583. [Google Scholar] [CrossRef]
- Ridoutt, B.G.; Pfister, S. A revised approach to water footprinting to make transparent the impacts of consumption and production on global freshwater scarcity. Global Environ. Chang. 2010, 20, 113–120. [Google Scholar] [CrossRef]
- Boulay, A.M.; Bare, J.; Benini, L.; Berger, M.; Lathuillière, M.J.; Manzardo, A.; Margni, M.; Motoshita, M.; Nunez, M.; Pastor, A.V.; et al. The WULCA consensus characterization model for water scarcity footprints: Assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 2018, 23, 368–378. [Google Scholar] [CrossRef]
- FAO. Water Use in Livestock Production Systems and Supply Chains: Guidelines for Assessment; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019. [Google Scholar]
- Boulay, A.M.; Drastig, K.; Amanullah; Chapagain, A.; Charlon, V.; Civit, B.; DeCamillis, C.; De Souza, M.; Hess, T.; Hoekstra, A.Y.; et al. Building consensus on water use assessment of livestock production systems and supply chains: Outcome and recommendations from the FAO LEAP Partnership. Ecol. Indic. 2021, 124, 107391. [Google Scholar] [CrossRef]
- Payen, S.; Basset-Mens, C.; Colin, F.; Roignant, P. Inventory of field water flows for agri-food LCA: Critical review and recommendations of modelling options. Int. J. Life Cycle Assess. 2017, 23, 1331–1350. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.W.; Richter, B.D. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef] [PubMed]
- WULCA. The AWARE Method. 2016. Available online: https://wulca-waterlca.org/aware/what-is-aware/ (accessed on 1 June 2017).
- Alcamo, J.; DÖLl, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; RÖSch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrol. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. National water footprint accounts: The green, blue and grey water footprint of production and consumption. In Value of Water Research Report Series No. 50; UNESCO-IHE: Delft, The Netherlands, 2011. [Google Scholar]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Glob. Biogeochem. Cycles 2002, 16, 15-1–15-10. [Google Scholar] [CrossRef]
- Higham, C.; Horne, D.; Singh, R.; Kuhn-Sherlock, B.; Scarsbrook, M.R. Water use on non-irrigated pasture-based dairy farms: Combining detailed monitoring and modeling to set benchmarks. J. Dairy Sci. 2017, 100, 828–840. [Google Scholar] [CrossRef]
- Higham, C.; Horne, D.; Singh, R.; Kuhn-Sherlock, B.; Scarsbrook, M.R. Temporal and spatial water use on irrigated and non-irrigated pasture-based dairy farms. J. Dairy Sci. 2017, 100, 6772–6784. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of Energy Value of Cows Milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Phyn, C.V.C.; Kay, J.K.; Rius, A.G.; Morgan, S.R.; Roach, C.G.; Grala, T.M.; Roche, J.R. Temporary alterations to postpartum milking frequency affect whole-lactation milk production and the energy status of pasture-grazed dairy cows. J. Dairy Sci. 2014, 97, 6850–6868. [Google Scholar] [CrossRef] [PubMed]
- FAO. CLIMWAT 2.0 for CROPWAT. In FAO Water; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Cichota, R.; Snow, V.O.; Tait, A.B. A functional evaluation of virtual climate station rainfall data. N. Z. J. Agric. Res. 2008, 51, 317–329. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT—A Computer Program for Irrigation Planning and Management. In FAO Irrigation and Drainage Paper 46; FAO—Food and Agriculture Organisation of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Allen, R.G.; Pereira, L.P.; Raes, D.; Smith, S. Crop evapotranspiration—Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Chapagain, A.; Hoekstra, A.Y. Water footprint of nations. In Value of Water Research Report Series No. 16; UNESCO-IHE: Delft, The Netherlands, 2004. [Google Scholar]
- Scotter, D.; Clothier, B.; Turner, M. The soil water balance in a fragiaqualf and its effect on pasture growth in central New Zealand. Soil Res. 1979, 17, 455–465. [Google Scholar] [CrossRef]
- Woods, R.; Hendrikx, J.; Henderson, R.; Tait, A. Estimating mean flow of New Zealand rivers. J. Hydrol. (NZ) 2006, 45, 95–109. [Google Scholar]
- Smakhtin, V.; Revenga, C.; Doll, P. Taking into account environmental water requirements in global-scale water resources assessments. In Comprehensive Assessment Report 2; Comprehensive Assessment Secretariat: Colombo, Sri Lanka, 2004. [Google Scholar]
- Aqualinc Research Ltd. Update of Water Allocation Data and Estimate of Actual Water Use of Consented Takes 2009–10. In Report No H10002/3. A Report Prepared for Ministry for the Environment, Christchurch, New Zealand; Aqualinc Research Ltd.: Christchurch, New Zealand, 2010. [Google Scholar]
- Shiklomanov, I.A.; Rodda, J.C. World Water Resources at the Beginning of the Twenty-First Century; International Hydrological Series; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Chapagain, A.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Lilburne, L.R.; Hewitt, A.E.; Webb, T.W. Soil and informatics science combine to develop S-map: A new generation soil information system for New Zealand. Geoderma 2012, 170, 232–238. [Google Scholar] [CrossRef]
- Land Air Water Aotearoa (n.d.). Available online: https://www.lawa.org.nz/explore-data/water-quantity/ (accessed on 18 January 2024).
- Pastor, A.V.; Ludwig, F.; Biemans, H.; Hoff, H.; Kabat, P. Accounting for environmental flow requirements in global water assessments. Hydrol. Earth Syst. Sci. 2014, 18, 5041–5059. [Google Scholar] [CrossRef]
- Hess, T. Estimating Green Water Footprints in a Temperate Environment. Water 2010, 2, 351–362. [Google Scholar] [CrossRef]
- Zhuo, L.; Mekonnen, M.M.; Hoekstra, A.Y. Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 2014, 18, 2219–2234. [Google Scholar] [CrossRef]
Farm Parameters | Unit | Waikato Non-Irrigated | Waikato Irrigated | Manawatu Non-Irrigated | Manawatu Irrigated | Canterbury Irrigated |
---|---|---|---|---|---|---|
Farm count | - | 42 | 3 | 18 | 5 | 20 |
Average grassland area | ha/farm | 172 | 132 | 172 | 363 | 212 |
Average stocking rate | Cows/ha | 3.16 | 3.23 | 2.53 | 2.35 | 3.87 |
Milk production (FPCM) * | L/cow/yr | 5224 | 5796 | 5052 | 5339 | 5263 |
Electricity use on-farm | kW h/ha/yr | 482.5 | 559.70 | 482.5 | 564.98 | 608.3 |
Brought-in maize silage | kg DM/ha/yr | 1120 | 1200 | 1130 | 1030 | 1530 |
Brought-in pasture silage | kg DM/ha/yr | 0 | 0 | 0 | 0 | 1530 |
Brought-in palm kernel expeller | kg DM/ha/yr | 2800 | 2100 | 2000 | 1800 | 0 |
Barley grain | kg DM/ha/yr | 0 | 0 | 0 | 0 | 1190 |
Wheat grain | kg DM/ha/yr | 0 | 0 | 0 | 0 | 1200 |
Annual rainfall | mm/ha | 1053 | 1074 | 1030 | 857 | 637 |
Applied irrigation | mm/ha/yr | 0 | 250 | 0 | 417 | 658 |
Irrigated Area | ha/farm | 0 | 81 | 0 | 238 | 212 |
% irrigated | % | 0 | 61 | 0 | 66 | 100 |
Parameter | Global Data Source | Local Data Source |
---|---|---|
Rainfall (P) and reference evapotranspiration (ETo) | CLIMWAT 2.0 for CROPWAT [27]. | The National Institute of Weather and Atmosphere Virtual Climate Station Network [28]. |
Effective rainfall (Peff) | USDA Soil Conservation Service method [29]. | |
Crop coefficients (Kc) | Crop coefficients [30,31]. | Crop coefficients [30,31]. |
Green water consumption (ETgreen) | A minimum of ETc and Peff [8]. | A locally developed soil water balance model [32], using local climatic and soil conditions. |
Irrigation water consumption (ETblue) | Difference between crop water requirements ETc and ETgreen [8,30]. | The minimum of the difference between the locally modelled ETc and ETgreen [32] for pasture growth and maize silage, and the difference between crop water requirements ETc and ETgreen [8,30] for pasture silage, barley grain, and wheat grain. |
WF Palm Kernel Expeller (cake) | Based on globally average green water volume used to produce palm kernel expeller [31]. | Based on globally average green water volume used to produce palm kernel expeller [31]. |
Imported crops | Imported crops based on the Waikato and Canterbury regions from 2004 to 2005 [7]. | Average farm imports estimated by the modelling team at Dairy NZ (T. Chikazhe; DairyNZ, Hamilton, New Zealand, Pers. Comm. 2016). |
Stock drinking water use (SDW) | Estimated stock drinking water [7]. | Locally measured stock drinking water [23,24]. |
Milking parlour water use (MPW) | Estimated milking parlour water use [7]. | Locally measured milking parlour water [23,24]. |
Available water (WA) | A locally calibrated and validated rainfall–runoff model [33]. | |
Environmental Water Requirements (EWRs) | Based on local water allocation limits in the Waikato region. Environmental requirements of 37% were used as suggested for New Zealand [7,34]. | |
Water abstractions (WU) | Locally recorded water allocations and actual water abstraction estimates from Aqualinc [35]. | |
Water consumption (HWC) | Locally estimated actual water abstractions from Aqualinc [35] and consumptive water fraction from Shiklomanov and Rodda [36]. | |
WULCA—CFAWARE | Global layer [19]. | Calculated from the locally sourced data listed in this table. |
WFN—WSblue | Global layer [18,37]. | Calculated from the locally sourced data listed in this table. |
Water Consumed (L/kg of FPCM 1) | Global Data | Local Data | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Irrigated Farms | Non-Irrigated Farms | Irrigated Farms | Non-Irrigated Farms | |||||||
Canterbury | Manawatu | Waikato | Manawatu | Waikato | Canterbury | Manawatu | Waikato | Manawatu | Waikato | |
SDW 2 | 2.7 | 2.1 | 1.2 | 2.7 | 2.7 | 1.2 | 1.9 | 2 | 2.1 | 2.2 |
MPW 2 | 2.4 | 3.8 | 2.9 | 2.4 | 2.4 | 3.2 | 2.5 | 2.2 | 2.6 | 2.4 |
ETgreen | 253 | 546 | 371 | 535 | 371 | 287 | 621 | 446 | 677 | 527 |
ETblue | 240 | 181 | 107 | 0 | 0 | 234 | 122 | 42 | 0 | 0 |
WFblue | 246 | 187 | 111 | 5 | 5 | 239 | 126 | 46 | 5 | 5 |
WFgreen | 253 | 546 | 371 | 535 | 371 | 287 | 621 | 446 | 677 | 527 |
Total WF | 499 | 733 | 482 | 540 | 376 | 525 | 747 | 492 | 682 | 531 |
Region | Global Data | Local Data | ||
---|---|---|---|---|
WSblue (-) | CFAWARE (m3 World eq./m3) | WSblue (-) | CFAWARE (m3 World eq./m3) | |
Waikato | 0.002 (1) | 0.765 (1) | 0.014 (1) | 0.300 (1) |
Manawatu | 0.010 (2) | 0.895 (2) | 0.098 (2) | 0.403 (2) |
Canterbury | 0.371 (3) | 7.355 (3) | 0.190 (3) | 0.473 (3) |
Range (min.–max.) | 0.002–0.371 | 0.765–7.355 | 0.014–0.190 | 0.300–0.473 |
Region: Catchment/ Water Management Zone | Global Data | Local Data | ||
---|---|---|---|---|
WSblue (-) | CFAWARE (m3 World eq./m3) | WSblue (-) | CFAWARE (m3 World eq./m3) | |
Waikato region | ||||
Waikato River | 0.002 (1) | 0.612 (2) | 0.031 (1) | 0.314 (2) |
Waihou | 0.006 (2) | 0.600 (1) | 0.032 (2) | 0.307 (1) |
Manawatu region | ||||
Rangitikei River | 0.008 (3) | 1.074 (3) | 0.257 (4) | 0.564 (5) |
Canterbury region | ||||
Orari-Opihi-Pareora | 0.673 (6) | 40.840 (6) | 0.129 (3) | 0.874 (6) |
Selwyn-Waihora | 0.353 (5) | 2.371 (4) | 0.361 (5) | 0.484 (3) |
Ashburton | 0.234 (4) | 3.025 (5) | 0.375 (6) | 0.502 (4) |
Range (min.–max.) | 0.002–0.673 | 0.600–40.840 | 0.031–0.375 | 0.0.314–0.874 |
Region: Catchment/ Water Management Zone | Global Data | Local Data | ||
---|---|---|---|---|
WFIIblue (-) | WFAWARE (m3 World eq./kg of FPCM) | WFIIblue (-) | WFAWARE (m3 World eq./kg of FPCM) | |
Waikato region 1 | 0.20 | 92.65 | 0.63 | 13.86 |
Waikato River | 0.21 (1) | 68.16 (2) | 1.44 (1) | 14.48 (2) |
Waihou | 0.66 (2) | 66.84 (1) | 1.46 (2) | 14.16 (1) |
Manawatu region 1 | 1.95 | 181.57 | 12.39 | 50.88 |
Rangitikei River | 1.48 (3) | 200.45 (3) | 32.49 (4) | 71.31 (3) |
Canterbury region 1 | 99.09 | 1962.67 | 45.41 | 112.80 |
Orari-Opihi-Pareora | 165.31 (6) | 10,026.24 (6) | 30.84 (3) | 208.39 (6) |
Selwyn—Waihora | 86.63 (5) | 581.97 (4) | 86.03 (5) | 115.39 (4) |
Ashburton | 57.46 (4) | 742.75 (5) | 89.52 (6) | 119.69 (5) |
Range (min.–max.) | 0.21–165.31 | 68.16–10,026.24 | 1.44–89.52 | 14.48–208.39 |
Water Footprint Method | EWR 1 | Water Scarcity Characterization Factors | Water Scarcity Footprint Indices | ||||
---|---|---|---|---|---|---|---|
Waikato | Manawatu | Canterbury | Waikato | Manawatu | Canterbury | ||
WFN-based method [8] | WSblue (-) | WFIIblue (-) | |||||
0.30 | 0.01 | 0.09 | 0.17 | 0.57 | 11.15 | 40.87 | |
0.37 | 0.01 | 0.10 | 0.19 | 0.63 | 12.39 | 45.41 | |
0.60 | 0.02 | 0.15 | 0.30 | 0.95 | 19.51 | 71.51 | |
0.64 | 0.02 | 0.17 | 0.34 | 1.05 | 21.89 | 80.26 | |
0.80 | 0.04 | 0.31 | 0.60 | 1.72 | 39.01 | 143.03 | |
AWARE method [12,14] | CFAWARE (m3 world eq./m3) | WFAWARE (m3 world eq./kg of FPCM) | |||||
0.30 | 0.27 | 0.36 | 0.42 | 12.54 | 45.30 | 99.19 | |
0.37 | 0.30 | 0.40 | 0.47 | 13.86 | 50.88 | 112.80 | |
0.60 | 0.46 | 0.82 | 0.86 | 21.14 | 103.23 | 205.44 | |
0.64 | 0.51 | 0.97 | 1.02 | 23.48 | 122.27 | 243.33 | |
0.80 | 0.84 | 1.68 | 3.01 | 38.95 | 212.20 | 718.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higham, C.D.; Singh, R.; Horne, D.J. The Water Footprint of Pastoral Dairy Farming: The Effect of Water Footprint Methods, Data Sources and Spatial Scale. Water 2024, 16, 391. https://doi.org/10.3390/w16030391
Higham CD, Singh R, Horne DJ. The Water Footprint of Pastoral Dairy Farming: The Effect of Water Footprint Methods, Data Sources and Spatial Scale. Water. 2024; 16(3):391. https://doi.org/10.3390/w16030391
Chicago/Turabian StyleHigham, Caleb D., Ranvir Singh, and David J. Horne. 2024. "The Water Footprint of Pastoral Dairy Farming: The Effect of Water Footprint Methods, Data Sources and Spatial Scale" Water 16, no. 3: 391. https://doi.org/10.3390/w16030391
APA StyleHigham, C. D., Singh, R., & Horne, D. J. (2024). The Water Footprint of Pastoral Dairy Farming: The Effect of Water Footprint Methods, Data Sources and Spatial Scale. Water, 16(3), 391. https://doi.org/10.3390/w16030391