Assessment and Prediction of Groundwater Vulnerability Based on Land Use Change—A Case Study of the Central Urban Area of Zhengzhou
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Preparation
3.2. Simulation of Land Use Types
3.3. Groundwater Vulnerability Assessment
3.3.1. DRASTIC Model
3.3.2. Optimization of DRASTIC Model Indicators
3.3.3. DRASTIC Model Indicator Weight Optimization
3.4. Verification of Groundwater Vulnerability Assessment Results
4. Results and Discussion
4.1. Temporal and Spatial Variation Characteristics of Land Use from 2000 to 2020
4.2. Prediction of LULC Changes in 2030 Based on the Markov–PLUS Model
4.3. Results of the DRASTICL Model and Verification
4.3.1. Results of the DRASTICL Model
4.3.2. Verification
4.4. Changes in Groundwater Vulnerability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, P.; Qian, H.; Zhou, W. Finding harmony between the environment and humanity: An introduction to the thematic issue of the Silk Road. Environ. Earth Sci. 2017, 76, 105. [Google Scholar] [CrossRef]
- Cassardo, C.; Jones, J.A.A. Managing Water in a Changing World. Water 2011, 3, 618–628. [Google Scholar] [CrossRef]
- Salman, S.A.; Arauzo, M.; Elnazer, A.A. Groundwater quality and vulnerability assessment in west Luxor Governorate, Egypt. Groundw. Sustain. Dev. 2019, 8, 271–280. [Google Scholar] [CrossRef]
- Yu, H.; Gui, H.; Zhao, H.; Wang, M.; Li, J.; Fang, H.; Jiang, Y.; Zhang, Y. Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area, Huaibei coalfield, China. Int. J. Coal Sci. Technol. 2020, 7, 825–835. [Google Scholar] [CrossRef]
- Aravinthasamy, P.; Karunanidhi, D.; Subramani, T.; Srinivasamoorthy, K.; Anand, B. Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin, South India: Implication on human health. Environ. Geochem. Health 2020, 42, 1937–1963. [Google Scholar] [CrossRef]
- Li, P.; Wu, J. Drinking Water Quality and Public Health. Expo. Health 2019, 11, 73–79. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, J.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 273. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J.; Cao, G. Deep challenges for China’s war on water pollution. Environ. Pollut. 2016, 218, 1222–1233. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Wu, J.; He, X.; Elumalai, V. Temporal Changes of Groundwater Quality within the Groundwater Depression Cone and Prediction of Confined Groundwater Salinity Using Grey Markov Model in Yinchuan Area of Northwest China. Expo. Health 2020, 12, 447–468. [Google Scholar] [CrossRef]
- Wei, M.; Wu, J.; Li, W.; Zhang, Q.; Su, F.; Wang, Y. Groundwater Geochemistry and its Impacts on Groundwater Arsenic Enrichment, Variation, and Health Risks in Yongning County, Yinchuan Plain of Northwest China. Expo. Health 2022, 14, 219–238. [Google Scholar] [CrossRef]
- Abunada, Z.; Kishawi, Y.; Alslaibi, T.M.; Kaheil, N.; Mittelstet, A. The application of SWAT-GIS tool to improve the recharge factor in the DRASTIC framework: Case study. J. Hydrol. 2021, 592, 125613. [Google Scholar] [CrossRef]
- Jang, W.; Engel, B.; Harbor, J.; Theller, L. Aquifer Vulnerability Assessment for Sustainable Groundwater Management Using DRASTIC. Water 2017, 9, 792. [Google Scholar] [CrossRef]
- Li, X.; Wu, H.; Qian, H. Groundwater contamination risk assessment using intrinsic vulnerability, pollution loading and groundwater value: A case study in Yinchuan plain, China. Environ. Sci. Pollut. Res. 2020, 27, 45591–45604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, P.; Lyu, Q.; Ren, X.; He, S. Groundwater contamination risk assessment using a modified DRATICL model and pollution loading: A case study in the Guanzhong Basin of China. Chemosphere 2022, 291, 132695. [Google Scholar] [CrossRef]
- Boulabeiz, M.; Klebingat, S.; Agaguenia, S. A GIS-Based GOD Model and Hazard Index Analysis: The Quaternary Coastal Collo Aquifer (NE-Algeria). Groundwater 2019, 57, 166–176. [Google Scholar] [CrossRef]
- Van Stempvoort, D.; Ewert, L.; Wassenaar, L. Aquifer vulnerability index: A GIS-compatible method for groundwater vulnerability mapping. Can. Water Resour. J. 1993, 18, 25–37. [Google Scholar] [CrossRef]
- Nekkoub, A.; Baali, F.; Hadji, R.; Hamed, Y. The EPIK multi-attribute method for intrinsic vulnerability assessment of karstic aquifer under semi-arid climatic conditions, case of Cheria Plateau, NE Algeria. Arab. J. Geosci. 2020, 13, 709. [Google Scholar] [CrossRef]
- Hamza, S.M.; Ahsan, A.; Imteaz, M.A.; Rahman, A.; Mohammad, T.A.; Ghazali, A.H. Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: A review. Environ. Earth Sci. 2015, 73, 3063–3076. [Google Scholar] [CrossRef]
- Raj, A.; Sinha, A.; Singh, A.; Pasupuleti, S. Assessment and prediction of hexavalent chromium vulnerability in groundwater by Geochemical modelling, NOBLES Index and Random Forest Model. Sci. Total Environ. 2024, 906, 167570. [Google Scholar] [CrossRef]
- Barzegar, R.; Asghari Moghaddam, A.; Adamowski, J.; Nazemi, A.H. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Environ. Sci. Pollut. Res. 2019, 26, 8325–8339. [Google Scholar] [CrossRef]
- Brindha, K.; Elango, L. Cross comparison of five popular groundwater pollution vulnerability index approaches. J. Hydrol. 2015, 524, 597–613. [Google Scholar] [CrossRef]
- Alam, F.; Umar, R.; Ahmed, S.; Dar, F.A. A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arab. J. Geosci. 2014, 7, 927–937. [Google Scholar] [CrossRef]
- Barzegar, R.; Moghaddam, A.A.; Deo, R.; Fijani, E.; Tziritis, E. Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Sci. Total Environ. 2018, 621, 697–712. [Google Scholar] [CrossRef]
- Kwon, E.; Park, J.; Park, W.; Kang, B.; Hyeon, B.; Woo, N.C. Nitrate vulnerability of groundwater in Jeju Volcanic Island, Korea. Sci. Total Environ. 2022, 807, 151399. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Kramer, M.; Paull, D.J. Comparison of DRASTIC and DRASTICL groundwater vulnerability assessments of the Burdekin Basin, Queensland, Australia. Sci. Total Environ. 2023, 858, 159945. [Google Scholar] [CrossRef] [PubMed]
- Luo, K.; Zhang, X. Increasing urban flood risk in China over recent 40 years induced by LUCC. Landsc. Urban Plan. 2022, 219, 104317. [Google Scholar] [CrossRef]
- Mooney, H.A.; Duraiappah, A.; Larigauderie, A. Evolution of natural and social science interactions in global change research programs. Proc. Natl. Acad. Sci. USA 2013, 110, 3665–3672. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, Y.; Hou, D.; Disse, M.; Brieden, A.; Zhang, H.; Yu, R. The study of artificial intelligence for predicting land use changes in an arid ecosystem. J. Geogr. Sci. 2022, 32, 717–734. [Google Scholar] [CrossRef]
- Nlend, B.; Celle-Jeanton, H.; Huneau, F.; Ketchemen-Tandia, B.; Fantong, W.Y.; Boum-Nkot, S.N.; Etame, J. The impact of urban development on aquifers in large coastal cities of West Africa: Present status and future challenges. Land Use Policy 2018, 75, 352–363. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Rajagopalan, P. Daytime thermal performance of different urban surfaces: A case study in educational institution precinct of Melbourne. Archit. Sci. Rev. 2018, 61, 29–49. [Google Scholar] [CrossRef]
- Liu, X.; Wang, X.; Zhang, L.; Fan, W.; Yang, C.; Li, E.; Wang, Z. Impact of land use on shallow groundwater quality characteristics associated with human health risks in a typical agricultural area in Central China. Environ. Sci. Pollut. Res. 2021, 28, 1712–1724. [Google Scholar] [CrossRef]
- Bawa, R.; Dwivedi, P. Impact of land cover on groundwater quality in the Upper Floridan Aquifer in Florida, United States. Environ. Pollut. 2019, 252, 1828–1840. [Google Scholar] [CrossRef]
- Lin, J.; Chen, Q. Analyzing and Simulating the Influence of a Water Conveyance Project on Land Use Conditions in the Tarim River Region. Land 2023, 12, 2073. [Google Scholar] [CrossRef]
- Gu, H.; Li, J.; Wang, S. Multi-Scenario Simulation of Land Use/Cover Change and Terrestrial Ecosystem Carbon Reserve Response in Liaoning Province, China. Sustainability 2024, 16, 8244. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Comber, A.; Fu, B.; Harris, P.; Wu, L. Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Sci. Rev. 2019, 190, 398–415. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Lin, J.; Luo, H.; Tan, Z.; Ma, Y. Simulating land use/land cover change in an arid region with the coupling models. Ecol. Indic. 2021, 122, 107231. [Google Scholar] [CrossRef]
- Huang, Z.; Li, X.; Du, H.; Mao, F.; Han, N.; Fan, W.; Xu, Y.; Luo, X. Simulating Future LUCC by Coupling Climate Change and Human Effects Based on Multi-Phase Remote Sensing Data. Remote Sens. 2022, 14, 1698. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Dai, K.; Shen, S.; Cheng, C.; Song, Y. Integrated evaluation and attribution of urban flood risk mitigation capacity: A case of Zhengzhou, China. J. Hydrol. Reg. Stud. 2023, 50, 101567. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Z.; Xiong, Y.; Yuan, W.; Wang, Y.; Tang, H.; Zheng, J.; Liu, Z. A critical application of different methods for the vulnerability assessment of shallow aquifers in Zhengzhou City. Environ. Sci. Pollut. Res. 2023, 30, 97078–97091. [Google Scholar] [CrossRef]
- Kazakis, N.; Voudouris, K.S. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: Modifying the DRASTIC method using quantitative parameters. J. Hydrol. 2015, 525, 13–25. [Google Scholar] [CrossRef]
- Shanmugamoorthy, M.; Subbaiyan, A.; Elango, L.; Velusamy, S. Groundwater susceptibility assessment using the GIS based DRASTIC-LU model in the Noyyal river area of South India. Urban Clim. 2023, 49, 101464. [Google Scholar] [CrossRef]
- Karan, S.K.; Samadder, S.R.; Singh, V. Groundwater vulnerability assessment in degraded coal mining areas using the AHP–Modified DRASTIC model. Land Degrad. Dev. 2018, 29, 2351–2365. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Q.; Zeng, Y.; Zheng, L.; Xu, L.; Liu, S.; Wang, D. Integrated variable weight model and improved DRASTIC model for groundwater vulnerability assessment in a shallow porous aquifer. J. Hydrol. 2022, 608, 127538. [Google Scholar] [CrossRef]
- Tasdighi, A.; Arabi, M.; Osmond, D.L. The Relationship between Land Use and Vulnerability to Nitrogen and Phosphorus Pollution in an Urban Watershed. J. Environ. Qual. 2017, 46, 1137. [Google Scholar] [CrossRef]
- Pantusa, D.; Saponieri, A.; Tomasicchio, G.R. Assessment of coastal vulnerability to land-based sources of pollution and its application in Apulia, Italy. Sci. Total Environ. 2023, 886, 163754. [Google Scholar] [CrossRef]
- Wang, W.; Mwiathi, N.F.; Li, C.; Luo, W.; Zhang, X.; An, Y.; Zhang, M.; Gong, P.; Liu, J.; Gao, X. Assessment of shallow aquifer vulnerability to fluoride contamination using modified AHP-DRASTICH model as a tool for effective groundwater management, a case study in Yuncheng Basin, China. Chemosphere 2022, 286, 131601. [Google Scholar] [CrossRef] [PubMed]
- Şener, E. Appraisal of groundwater pollution risk by combining the fuzzy AHP and DRASTIC method in the Burdur Saline Lake Basin, SW Turkey. Environ. Sci. Pollut. Res. 2023, 30, 21945–21969. [Google Scholar] [CrossRef] [PubMed]
- Jesiya, N.P.; Gopinath, G. A Customized FuzzyAHP-GIS based DRASTIC-L model for intrinsic groundwater vulnerability assessment of urban and peri urban phreatic aquifer clusters. Groundw. Sustain. Dev. 2019, 8, 654–666. [Google Scholar] [CrossRef]
- Nobre, R.C.M.; Rotunno Filho, O.C.; Mansur, W.J.; Nobre, M.M.M.; Cosenza, C.A.N. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J. Contam. Hydrol. 2007, 94, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Wang, H. Study on Water Resource Carrying Capacity of Zhengzhou City Based on DPSIR Model. Int. J. Environ. Res. Public Health 2023, 20, 1394. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z. A study on the evaluation of competitiveness in the aviation logistics industry cluster in Zhengzhou. Sci. Rep 2024, 14, 2659. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hu, Y.; Taukenova, A.; Tian, G.; Mu, B. Identification of Wetland Conservation Gaps in Rapidly Urbanizing Areas: A Case Study in Zhengzhou, China. Land 2023, 12, 221. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Min, R.; Song, G.; Song, H.; Zhai, S.; Xia, H.; Zhang, H.; Ru, X. Contribution of local and surrounding anthropogenic emissions to a particulate matter pollution episode in Zhengzhou, Henan, China. Sci. Rep. 2023, 13, 8771. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T.; Kato, K. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, K.; Yoon, H. Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors. Hydrogeol. J. 2019, 27, 567–579. [Google Scholar] [CrossRef]
- Li, F.; Feng, P.; Zhang, W.; Zhang, T. An Integrated Groundwater Management Mode Based on Control Indexes of Groundwater Quantity and Level. Water Resour. Manag. 2013, 27, 3273–3292. [Google Scholar] [CrossRef]
- Zare, M.; Nikoo, M.R.; Nematollahi, B.; Gandomi, A.H.; Farmani, R. Multi-variable approach to groundwater vulnerability elucidation: A risk-based multi-objective optimization model. J. Environ. Manag. 2023, 338, 117842. [Google Scholar] [CrossRef]
- Chen, J.; Wang, E.; Xue, J.; Cui, L.; Zheng, X.; Du, Q. Effects of soil particle size and gradation on the transformation between shallow phreatic water and soil water under laboratory freezing-thawing action. J. Hydrol. 2023, 619, 129323. [Google Scholar] [CrossRef]
- Tungittiplakorn, W.; Lion, L.W.; Cohen, C.; Kim, J. Engineered Polymeric Nanoparticles for Soil Remediation. Environ. Sci. Technol. 2004, 38, 1605–1610. [Google Scholar] [CrossRef]
- Goyal, D.; Haritash, A.K.; Singh, S.K. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods. J. Environ. Manag. 2021, 296, 113161. [Google Scholar] [CrossRef] [PubMed]
- Huan, H.; Wang, J.; Teng, Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Sci. Total Environ. 2012, 440, 14–23. [Google Scholar] [CrossRef]
- Roy, A.; Chatterjee, S.; Kumar Sinha, U.; Kumar Jain, A.; Mohokar, H.; Jaryal, A.; Keesari, T.; Jagat Pant, H. Recharge and vulnerability assessment of groundwater resources in North west India: Insights from isotope-geospatial modelling approach. Geosci. Front. 2024, 15, 101721. [Google Scholar] [CrossRef]
- Shrestha, S.; Kafle, R.; Pandey, V.P. Evaluation of index-overlay methods for groundwater vulnerability and risk assessment in Kathmandu Valley, Nepal. Sci. Total Environ. 2017, 575, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Dong, W.; Chen, H.; Wang, R. Groundwater vulnerability assessment of typical covered karst areas in northern China based on an improved COPK method. J. Hydrol. 2023, 624, 129904. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Dai, W.; Li, J.; Yang, P.; Tian, L.; Yu, S.; Zuo, R.; Zhai, Y.; Song, W.; et al. Nitrate attenuation with rising groundwater levels: An integrated assessment using isotope tracers and microbial signatures. J. Hydrol. 2023, 624, 129911. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Majeed, Z.; Banat, F.; Ho, S.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Li, Q.; Liu, G.; Qi, L.; Wang, H.; Ye, Z.; Zhao, Q. Heavy metal-contained wastewater in China: Discharge, management and treatment. Sci. Total Environ. 2022, 808, 152091. [Google Scholar] [CrossRef]
- Ewuzie, U.; Saliu, O.D.; Dulta, K.; Ogunniyi, S.; Bajeh, A.O.; Iwuozor, K.O.; Ighalo, J.O. A review on treatment technologies for printing and dyeing wastewater (PDW). J. Water Process Eng. 2022, 50, 103273. [Google Scholar] [CrossRef]
- Tu, Y.; Shao, G.; Zhang, W.; Chen, J.; Qu, Y.; Zhang, F.; Tian, S.; Zhou, Z.; Ren, Z. The degradation of printing and dyeing wastewater by manganese-based catalysts. Sci. Total Environ. 2022, 828, 154390. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, X.; Wu, S.; Yao, X.; Feng, L.; Feng, X.; Ma, Y. Insight into the application of micro-nano bubbles combined with heat-activated persulfate oxidation for removing dissolved organic matter from printing and dying wastewater. J. Water Process Eng. 2023, 56, 104463. [Google Scholar] [CrossRef]
- Li, J.Y.; Zheng, X.; Zhang, C.; Chen, Y. Impact of Land-Use and Land-Cover Change on Meteorology in the Beijing-Tianjin-Hebei Region from 1990 to 2010. Sustainability 2018, 10, 176. [Google Scholar] [CrossRef]
- Liang, J.; Li, S.; Li, X.; Li, X.; Liu, Q.; Meng, Q.; Lin, A.; Li, J. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. J. Clean. Prod. 2021, 279, 123851. [Google Scholar] [CrossRef]
Type | Area (km2) | |||
---|---|---|---|---|
2000 | 2010 | 2020 | 2030 | |
Forest | 19.37 | 4.36 | 4.37 | 4.35 |
Grass land | 0.69 | 0.68 | 0.68 | 0.10 |
Water | 71.79 | 83.69 | 69.31 | 70.76 |
Rural land | 68.21 | 86.01 | 98.42 | 103.82 |
Urban land | 163.99 | 404.24 | 477.42 | 524.41 |
Dry land | 525.97 | 340.77 | 255.35 | 193.69 |
Paddy land | 143.11 | 64.99 | 53.03 | 44.10 |
Industrial land | 13.44 | 21.09 | 47.25 | 64.63 |
D | R | A | S | T | I | C | L | Weights | |
---|---|---|---|---|---|---|---|---|---|
D | (1,1,1) | (2,3,5) | (2,4,5) | (3,5,6) | (3,5,7) | (1/3,1,2) | (3,4,5) | (1/4,1,3) | 0.23 |
R | (1/5,1/3,1/2) | (1,1,1) | (2,3,5) | (2,5,6) | (3,5,6) | (1/4,1/2,1) | (2,3,4) | (1/5,1/3,.1/2) | 0.19 |
A | (1/5,1/4,1/2) | (1/5,1/3,1/2) | (1,1,1) | (1,3,4) | (1,3,4) | (1/6,1/4,1/2) | (1/2,1,3) | (1/6,1/4,1/3) | 0.11 |
S | (1/6,1/5,1/3) | (1/6,1/5,1/2) | (1/4,1/3,1) | (1,1,1) | (1/2,1,3) | (1/7,1/6,1/3) | (1/4,1/3,1) | (1/6,1/5,1/3) | 0.03 |
T | (1/7,1/5,1/3) | (1/6,1/5,1/3) | (1/4,1/3,1) | (1/3,1,2) | (1,1,1) | (1/6,1/5,1/3) | (1/4,1/3,1) | (1/6,1/5,1/3) | 0.01 |
I | (1/2,1,3) | (1,2,4) | (2,4,6) | (3,6,7) | (3,5,6) | (1,1,1) | (2,5,6) | (1/2,1,3) | 0.1 |
C | (1/5,1/4,1/3) | (1/4,1/3,1/2) | (1/3,1,2) | (1,3,4) | (1,3,4) | (1/6,1/5,1/3) | (1,1,1) | (1/5,1/4,1/2) | 0.1 |
L | (1/3,1,4) | (2,3,5) | (3,4,6) | (3,5,6) | (3,5,6) | (1/3,1,2) | (2,4,5) | (1,1,1) | 0.23 |
Index | Unit | Minimum | Maximum | Average | AUC Area | Spearman Correlation Coefficient |
---|---|---|---|---|---|---|
Total dissolved solids | mg/L | 242 | 1600 | 639.85 | 0.775 | 0.83 |
Chloride | mg/L | 0.104 | 1020 | 92.18 | 0.804 | 0.83 |
Sulfate | mg/L | 0.313 | 434 | 89.27 | 0.778 | 0.82 |
Nitrate | mg/L | ND | 209 | 18.38 | 0.603 | 0.64 |
Ammonia nitrogen | mg/L | ND | 0.181 | 0.04 | 0.688 | 0.77 |
Total iron | mg/L | ND | 13 | 0.91 | 0.795 | 0.74 |
Chemical oxygen demand | mg/L | 0.6 | 2.5 | 1.08 | 0.522 | 0.54 |
Year | Area (km2) | ||||
---|---|---|---|---|---|
Very Low | Low | Medium | High | Very High | |
2020 | 5.13 | 202.86 | 459.79 | 274.58 | 81.05 |
2030 | 4.67 | 194.76 | 444.82 | 281.45 | 81.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, W.; Wang, Z.; Zhang, T.; Liu, Z.; Ma, Y.; Xiong, Y.; An, F. Assessment and Prediction of Groundwater Vulnerability Based on Land Use Change—A Case Study of the Central Urban Area of Zhengzhou. Water 2024, 16, 3716. https://doi.org/10.3390/w16243716
Yuan W, Wang Z, Zhang T, Liu Z, Ma Y, Xiong Y, An F. Assessment and Prediction of Groundwater Vulnerability Based on Land Use Change—A Case Study of the Central Urban Area of Zhengzhou. Water. 2024; 16(24):3716. https://doi.org/10.3390/w16243716
Chicago/Turabian StyleYuan, Wenchao, Zhiyu Wang, Tianen Zhang, Zelong Liu, Yan Ma, Yanna Xiong, and Fengxia An. 2024. "Assessment and Prediction of Groundwater Vulnerability Based on Land Use Change—A Case Study of the Central Urban Area of Zhengzhou" Water 16, no. 24: 3716. https://doi.org/10.3390/w16243716
APA StyleYuan, W., Wang, Z., Zhang, T., Liu, Z., Ma, Y., Xiong, Y., & An, F. (2024). Assessment and Prediction of Groundwater Vulnerability Based on Land Use Change—A Case Study of the Central Urban Area of Zhengzhou. Water, 16(24), 3716. https://doi.org/10.3390/w16243716